1. Introduction

This document specifies the architecture of the MUX gate array for the Fast Forward project. This array connects the R4000 processor to the the memory system and the GIO64 Bus. Each of the two MUX parts handle 36 bits including parity. A block diagram of the full machine is shown below:

1.1 MUX Block Diagram

The MUX chip is a data path part that is used to move data between the processor, memory, and GIO64 bus. Since the CPU, and GIO64 run at different clock rates the MUX will help solve flow control problems over the asynchronous boundaries. This will be accomplished using a fifo on writes from the CPU. The GIO64 bus will initially run at 33 MHz so that it can be compatible with GIO, but will be able to run at speeds up to 40 MHz. The interface between GIO64 and memory will be completely synchronous to the GIO64 clock while the interface between the CPU and memory will also be synchronous to the CPU clock (50 MHz). The fifo in the MUX will be used as a write buffer on CPU writes to memory and GIO64. A block diagram of the chip is shown on the next page.

There are six different basic operations that are performed by the MUX chip. These are CPU reads and writes to memory, CPU reads and writes to a GIO64 device, and GIO64 reads and writes to memory. Each of there operations will be explained in detail in the following sections.

The MUX chips has two different clocks, the CPU clock and the GIO clock. Some operations are synchronous to the GIO clock and others are synchronous to the CPU clock. The MUX control signals from MC are used for both types of operations so there is a pair of select signals that indicate to the MUX chip which set of operations are being selected and the clock to flop the MUX control signals. All of the MUX control signals are flopped before they are used. The two select signals are cpu_sel and gio_sel. The cpu_sel signals is active for CPU reads and and writes to main memory. The gio_sel is active for the other four MUX operations. The two select signals will never both be asserted at the same time.

1.2 Operation Select

Four control signals: gio_sel, cpu_sel, mux_dir, and aen_mem determine the current MUX operation. Either gio_sel or cpu_sel will be asserted during each of the operations. Cpu_sel is synchronous to the cpu_clk and gio_sel is synchronous to the gio_clk. Below is a chart of the different operations and the source of the bus parity signals:

<u>cpu_sel</u>	<u>mux_dir</u>	<u>aen_mem</u>	<u>Operation</u>
0	0	0	CPU GI064 device read. Parity is generated.
0	0	1	GIO64 write to memory. Parity is generated.
0	1	0	CPU GI064 device write. Parity is generated.
0	1	1	GIO64 read from memory. Parity from memory.
1	0	d	CPU memory write. Parity is generated.
1	1	d	CPU memory read. Parity from memory.

During cpu memory reads and writes the aen_mem signals is used for another function.

Note that this document references the input csize64, which is no longer an input to MUX. The csize64 input was ncluded to support R3000 processors, but was removed as an input when R3000 support was no longer needed for Fast Forward machines. The internal core of MUX still contains csize64 references, but this signal is pulled high internally

MUX Block Diagram

1.3 Memory Reads and Writes By the CPU

During memory reads and memory writes by the CPU the cpu_sel signal is asserted and the MUX control signals are clocked with the CPU clock.

1.3.1 Processor Writes to Memory

Processor writes to memory are a two part operation. In the first part the data is buffered in the MUX chip until it can be written into memory. The data comes over the sysad bus and is flopped three times so that the MC chip has time to determine if the data is valid and send a CPU_PUSH signal to the MUX chip. If the data is not valid it will not be put into the fifo. The CPU memory write fifo is 32 entries deep. It is important to only put valid data into the fifo since there is no way to purge data from the fifo except to pop the fifo. The MC chip will keep track of how many data entries are in the fifo. CPU write data can be added to the MUX chip fifo at any time, even when the MUX chip is being used for a different operation. The cpu_sel signals does not have to be asserted to add data to the mux fifo, only the cpu_push signal needs to be asserted. The cpu_push signal is a dedicated signal so that write data can be added to the fifo at any time. This fifo needs to be 32 entries deep so that it can hold two complete 32 word block writes from the CPU, which is the largest block write the CPU can issue.

The csize64 control signal is a static signal that indicates that the processor has a full 64 bit interface. This signal should be connected to the r4k signal from the MC chip. When this signal is not asserted bottom 32 bits of the sysad bus, (sysad(31:0)), are copied to the top bits of the bus, (63:32), between the first and second set of data input flops. This signal is deasserted for an R3000 processor and will duplicate the write data so that it is ready to write into memory. This signal is pulled high internally since R3000 support was not required for Fast Forward machines.

The second part of a CPU write is actually writing the data into memory. When the fifo is full the MC chip will deassert the processor cpu_wrrdy_n signal so that the processor will not issue another write until the data in the write fifo has been written. The MC chip arbitrates for the memory system and then writes the data into memory by popping the data off the fifo and flopping it into the memory data write flops while it is written to memory. During this part of the operation the cpu_sel signal will be asserted. There are two sets of flops between the output of the CPU write buffer and the memory data outputs. The first set are controlled with the Aen and the Ben control signals. When either of these is active during a write to main memory by the CPU the CPU write buffer is popped. The second set of flops is controlled by the cen signal.

During the second part of the CPU write to memory the MUX control signals have the following meaning:

gio_sel	0	The gio_sel signal will be 0 during CPU write	es to
		memory.	
cpu_sel	1	The cpu_sel signal will always be 1 during the s	second
		part of a memory write.	
cpu_push	d	The CPU can still be writing data to the CPU m	nemory
		buffer during a memory write.	

cpu_mem_oe		The memory output buffers will be turned on when this signal is asserted.
data_sel(2:0)	d	These signals are not used.
mux_dir	0	This signal should be 0 for memory writes.
graphics(1:0)	d	These signals are not used.
aen_mem		When this signal is asserted the A register will be
		enabled and the CPU memory buffer will be popped.
ben_ctrl		When this signal is asserted the B register will be
		enabled and the CPU memory buffer will be popped.
cen_fifo		When this signal is asserted the C register will be
		enabled. If both cen_fifo and aen_mem or ben_ctrl are
		both asserted in the same cycle the data from the CPU
		memory buffer instead of the A or B register will be
	_	loaded into the C register.
giostb	d	This signal is not used.
par_flush		When this signal is asserted bad memory parity will be
		written into main memory. This is used for
		diagnostics.

A block diagram of the CPU memory write path is shown on the following page.

The CPU Write buffer is implemented such that the data being written does not have to be available to be read the same cycle. This is accomplished by using the by-pass muxes with the Fifo_Empty control signal. Also, if a read address changes value, the data associated with the new address does not have to be valid until two cycles later. This is accomplished by using a triple-port RAM and "ping-ponging" the read data from one port to another. The Ram_Mux_Sel control signal is used for this purpose. All additional control signals and muxes are included so that 65 MHz worse case timing can be met using RAMs currently available from LSI logic in their 100k series.

1.3.2 Processor Reads From Memory

The MUX chip acts as an interleave multiplexer during CPU reads from memory. The data from memory comes in the two memory data ports on MUX and is flopped with the cpu_clk. This flop is enabled with the cen_fifo control signal. The data that is to be sent back to the processor is selected with the data_sel control signals. Parity is then generated and checked. This data is then flopped and sent over the sysad bus.

The MUX control signals during processor reads from memory have the following meaning:

gio_sel	0	The gio_sel signal will be 0 during CPU reads from memory.
cpu_sel	1	The cpu_sel signal will be 1 during CPU reads from memory.
cpu_push	d	The CPU can still be writing data to the CPU memory buffer during a memory read, although when the read is returning data to the processor the sysad bus is busy and so therefore can not be used by the CPU to send write data.
csize64	d	This signal is not used.
cpu_mem_oe		The sysad output buffers will be turned on when this signal is asserted.
data_sel(2)	d	This signals is not used.
data_sel(1:0)		These signal determine the source of the memory read data. 0 - mem_a(63:32) -> sysad(31:0), d -> sysad(63:32) 1 - mem_b(63:32) -> sysad(31:0), d -> sysad(63:32) 2 - mem_a -> sysad 3 - mem_b -> sysad
mux_dir	1	This signal should be 1 for memory reads.
graphics(1.0)	a	These signals are not used.
bon atrl	d d	This signal is not used.
cen_fifo	u	When this signal is asserted the memory data input flop is enabled.
giostb	d	This signal is not used.
par_flush	d	This signal is not used.

A block diagram of the CPU memory read path is shown on the following page.

Processor Reads From Memory

1.4 GIO Operations

1.4.1 Processor Reads From GIO64/EISA

The R4000 processor can issue a read to any device on the GIO64 bus. The address is sent to the MC chip which decodes it and then arbitrates for the GIO64 bus. Once it has been granted the bus it sends out the address on the GIO64 bus. The read data from the GIO64 device is flopped by the MUX chip and then sent through a mux where a word swap operation may be performed. The data is then flopped again and sent over the sysad bus back to the processor. There are two different word swap operations that are needed. The first is directly sending gio_ad(63:0) to sysad(63:0). The second operation is to duplicate the lower word on the GIO64 bus onto both words of the sysad bus. This is necessary when the R4000 is reading from a 32 bit GIO64 device. The third operation is moving the high word on the GIO64 bus to the low word on the sysad bus. This is needed when the R3000 reads data from a 64 bit GIO64 device and the data is returned on the high bits of the bus.

The data that is returned to the processor is not synchronized in the MUX chip. Instead the data is held on the GIO64 bus for a few clocks before it is sent to the processor. As long as the cpu_mem_oe signal is asserted while gio_sel is asserted, mux_dir is deasserted, and aen_mem is deasserted the data from the GIO64 bus will be flopped onto the sysad bus.

EISA reads look just like GIO64 device reads as far as the MUX is concerned.

The MUX control signals during processor reads from the GIO64 bus have the following meaning:

gio_sel	1	This is a GIO operation.
cpu_sel	0	This signal must be 0.
cpu_push	d	This signal will be 0 since the CPU is waiting for a
		read response.
csize64	d	This signal is not used.
cpu_mem_oe		The sysad output buffers will be turned on when this
		signal is asserted.
data_sel(2)	d	This signals is not used.
data_sel(1:0)		These signal determine the word swap operation.
		0 - gio_ad(63:0) -> sysad(63:0)
		1 - gio_ad(31:0) -> sysad(31:0)
		qio ad(31:0) -> sysad(63:32)
		2 - gio_ad(63:32) -> sysad(31:0), d -> sysad(63:32)
		3 - reserved
mux_dir	0	This signal should be 0 for GIO64 reads.
graphics(1:0)	d	This signal is not used.
aen_mem	0	This signal should be 0 for GIO64 reads.
ben_ctrl	d	This signal is not used.
cen_fifo	d	This signal is not used.
giostb	d	This signal is not used.
par_flush	d	This signal is not used.

A block diagram of the CPU GIO64 read path is shown on the following page.

Processor Reads From GIO64/EISA

Data from memory

1.4.2 Processor Writes to GIO64

The R4000 processor can issue a write to any device on the GIO64 bus. Data is pushed into the cpu write fifo synchronous to the CPU_CLK and popped out synchronous to the GIO_CLK. The MC writes the data to the CPU write buffer using the cpu push signal. The MC chip must make sure the data is in the write buffer before it tries to pop it off the fifo. Cache writes are supported to devices that are 64 bits wide when the processor is a R4000. For each piece of data to be written the MC chip sends the MUX chip a GIO command. The GIO command is put into a twelve entry command fifo in the MUX chip and then as each piece of data is transferred the command fifo is popped. When the fifo is empty the MUX should turn off it gio_ad output buffer. Normal GIO writes will only have one GIO command, but cache block writes to EISA can result in many commands. Part of the GIO command is which GIO delay signal to use to determine when the data has been transferred.

As each GIO command has been satisfied the MUX chip needs to wait a dead clock before transferring the data for the next GIO command. During cache block writes the CPU will assert masdly during these dead cycles.

The MUX control signals during processor writes to the GIO64 bus have the following meaning:

1	This is a GIO operation.
0	This signal must be 0.
d	This signal is not used.
d	This signal is not used.
0	This signal should be 0.
d	These signals are not used.
	This signal determines the word swap operation.
	0 - sysad(63:0) -> gio_ad(63:0)
	1 - sysad(31:0) -> gio_ad(63:32)
	sysad(63:32) -> gio_ad(31:0)
1	This signal should be 1 for CPU GIO64 writes.
	These signals determine which delay signal is from the
	addressed slave.
	0 - slvdly
	1 - grxdly0
	2 - grxdly2
	3 - grxdly3
0	This signal should be 0 for CPU GIO64 writes.
d	This signal is not used.
d	This signal is not used.
	This signal is asserted each time a new GIO command is
	sent to the MUX.
d	This signal is not used.
	1 0 d 0 d 1 0 d d d d d d d d d d d d d

A block diagram of the CPU GIO64 write path is shown on the following page.

Processor Writes To GIO64/EISA

1.4.3 GIO Writes To Memory

The MUX chip is used to buffer and pack data that is being written into main memory. The MUX chips packs data from 32 and 64 bit bus masters into 128 bit quad words to be written into main memory. There is also a six entry write buffer between the GIO64 bus and the memory data outputs. This isolates GIO bus stalls from the memory write.

GIO memory writes use GIO commands from the MC chip it indicate the packing operations that are to be performed. There is one GIO command for each piece of data that is transferred on the GIO64 bus. A GIO command is indicated by the MC chip asserting the giostb signal. The ben_ctrl signal is used to pop data off the write fifo. This signal is not part of the GIO command. When the fifo is empty the fifo output should be the contents of the GIO packing registers. The graphics signal is used to indicate to the MUX chip which delay signal is from the bus master. If the write fifo in the MUX chip gets filled up the MC chip will assert slvdly to throttle the transfer and the MUX chip will not have any new GIO commands. Once a piece of data has been transferred on the bus, which can be determined by looking at the bus masters delay signal the GIO command is popped and the next GIO command is executed.

If the transfer gets preempted the par_flush signal will be asserted to indicate that the GIO command fifo should be flushed of any valid entries and that the write fifo counters should be cleared.

The MUX chip does not have to worry about the write buffer being over filled. The MC chip has to keep track of how many entries are in the buffer. The MC chip controls how full the write buffer is by only sending out enough GIO commands to keep the write buffer full. When the MUX chip has run out of new GIO commands because the write buffer is full the MC chip will assert slvdly to stall the bus master.

The MUX control signals during GIO64 writes to main memory have the following meaning:

gio_sel	1	This is a GIO operation.
cpu_sel	0	This signal must be 0.
cpu_push	d	This signal is not used.
csize64	d	This signal is not used.
cpu mem oe	0	This signal should be 0.
data_sel(2:0)		This signal determines which data in the packer
		register is written.
		0 - Write A Lo, gio_ad(31:0) -> A lo
		1 - Write B Lo, gio_ad(31:0) -> B lo
		2 - Write A Hi, gio_ad(31:0) -> A hi
		3 - Write B Hi, gio_ad(31:0) -> B hi
		4 - Write A Hi and Lo, gio_ad(31:0) -> A lo
		gio_ad(63:32) -> A hi
		5 - Write B Hi and Lo, gio_ad(31:0) -> B lo
		gio_ad(63:32) -> B hi
		6 - Reserved
		7 - Reserved
mux_dir	0	This signal should be 0 for GIO64 writes to memory.
graphics(1:0)		These signals determine which delay signal is from the
· ·		addressed slave.

0 - masdly
1 - grxdly0
2 - grxdly2
3 - grxdly3
This signal should be 1 for GIO64 writes to memory.
This signal is used to pop data off the write fifo.
This signal is used to push data onto the write fifo.
This signal is asserted each time a new GIO command is
sent to the MUX.
When this signal is asserted the GIO command fifo and
the GIO write fifo should be flushed.

A block diagram of the GIO64 memory write path is shown on the following page.

GIO Write Buffer Expanded

To Memory Output Muxes

The GIO Write buffer is implemented such that the data being written does not have to be available to be read the same cycle. This is accomplished by using the by-pass muxes with the Ram_MUX_Sel control signal. Also, if a read address changes value, the data associated with the new address does not have to be valid until two cycles later. This is accomplished by using a triple-port RAM and "ping-ponging" the read data from one port to another. The Ram_Mux_Sel control signal is also used for this purpose. The additional control signal and mux are included so that 40 MHz worse case timing can be met using RAMs currently available from LSI logic in their 100k series.

1.4.4 GIO Reads From Memory

The Mux chip is a data buffer and unpacker during GIO64 reads from main memory. Like GIO memory reads the memory writes work off of a GIO command. The GIO command determines when the GIO read data fifo is popped and which data is sent over the GIO64 bus. The graphics signal indicates which master delay signal should be used in determining when a piece of data has been transferred. When a piece of data has been transferred the GIO command fifo is popped and the next command should be executed in the following cycle. The cen_fifo signal is part of the GIO command and indicates when the GIO read fifo should be popped. The ben_ctrl signal is not part of the GIO command and is used to push data onto the GIO read fifo. The GIO memory read fifo is three entries deep.

When the par_flush signal is asserted the GIO command fifo and the GIO read fifo should be flushed.

When the GIO command fifo is empty the MUX chip should stop driving the GIO bus. When the memory system can not keep up with a GIO64 device the MUX chip will run out of GIO commands. During this time the MC chip will assert slvdly to stall the GIO64 master.

The MUX control signals during GIO64 reads to main memory have the following meaning:

This is a GIO operation.
This signal must be 0.
This signal is not used.
This signal is not used.
This signal should be 0.
This signal is used to determine whether MUX should drive the gio bus. This is included so that for back to back reads, MUX does not turn off its drivers, and then quickly turn them back on again
This signal determines which data is sent over the GIO64 bus.
$0 - Mem_A(63:0) -> GIO_AD(63:0)$
$I - Mem_B(63:0) -> GIO_AD(63:0)$
$2 - Mem_A(63:32) \rightarrow GIO_AD(31:0), d \rightarrow GIO_AD(63:32)$
$3 - \text{Mem}_B(63:32) -> \text{GIO}_AD(31:0), a -> \text{GIO}_AD(63:32)$
This signal should be I for G1064 reads from memory.
These signals determine which delay signal is from the
addressed slave.
0 - masdly
1 - grxdly0
2 - grxalyi
3 - grxaly2
This signal should be I for G1064 reads from memory.
This signal is used to push data on the read fifo.
This signal is used to pop data off the read fifo.
This signal is asserted each time a new GIO command is sent to the MIIX
When this signal is asserted the GIO command fifo and
the GIO read fifo should be flushed.

A block diagram of the GIO64 memory read path is shown on the following page.

GIO64 Reads From Memory

GIO Read Buffer Expanded

To Data Swap Muxes

The GIO Read buffer is implemented such that the data being written does not have to be available to be read the same cycle. This is accomplished by using the by-pass muxes with the Ram_MUX_Sel control signal. Also, if a read address changes value, the data associated with the new address does not have to be valid until two cycles later. This is accomplished by using a triple-port RAM and "ping-ponging" the read data from one port to another. The Ram_Mux_Sel control signal is also used for this purpose. The additional control signal and mux are included so that 40 MHz worse case timing can be met using RAMs currently available from LSI logic in their 100k series.

2. MUX Pins

There are 189 signal pins on the mux chip including five signals for test which at this time are not defined. This part will be packaged in the 240 pin MQFP.

2.1 Data Buses

<pre>sysad(31:0)</pre>	i/o	32 bits of R4000 processor bus, made up of 4 bytes.
		SYSAD R4000 R4000
		(31:24) is $(63:56)$ or $(55:48)$
		(23:16) is $(39:32)$ or $(47:40)$
		(15: 8) is $(31:24)$ or $(23:16)$
		(7:0) is $(7:0)$ or $(15:8)$
<pre>sysad_par(3:0)</pre>	i/o	Parity over sysad.
gio_data(31:0)	i/o	32 bits of GIO64 data bus, made up of 4
		bytes.
		GIODATA GIO64 GIO64
		(31:24) is (63:56) or (55:48)
		(23:16) is (39:32) or (47:40)
		(15: 8) is $(31:24)$ or $(23:16)$
		(15: 8) is $(31:24)$ or $(23:16)(7: 0)$ is $(7:0)$ or $(15: 8)$
gio_par(3:0)	i/o	(15: 8) is (31:24) or (23:16) (7: 0) is (7:0) or (15: 8) Parity over the gio_data.
gio_par(3:0) mem_a(31:0)	i/o i/o	<pre>(15: 8) is (31:24) or (23:16) (7: 0) is (7:0) or (15: 8) Parity over the gio_data. Memory interleave A data.</pre>
gio_par(3:0) mem_a(31:0) mem_a_par(3:0)	i/o i/o i/o	<pre>(15: 8) is (31:24) or (23:16) (7: 0) is (7:0) or (15: 8) Parity over the gio_data. Memory interleave A data. Parity over mem_a.</pre>
gio_par(3:0) mem_a(31:0) mem_a_par(3:0) mem_b(31:0)	i/o i/o i/o i/o	<pre>(15: 8) is (31:24) or (23:16) (7: 0) is (7:0) or (15: 8) Parity over the gio_data. Memory interleave A data. Parity over mem_a. Memory interleave B data.</pre>

2.2 MUX Control Signals

Some of the control signals serve more than one function. The function is dependent on whether or not the GIO bus is involved in the operation. The giosel and cpusel signals are used to determine which function is the current function.

giosel	in	Active during gio<->memory and cpu<->gio
		transfers. Mutually exclusive with cpusel
cpusel	in	Active during cpu<->memory
		transfers.Mutually exclusive with giosel
cpu_push	in	Push data onto the CPU write fifo.
csize64	in	This signal is used to indicate a full 64
		bit transfer over the SYSAD bus.
		0 - Processor is a R3000
		1 - Processor is a R4000
cpu_mem_oe	in	Control buffer driving memory bus A and B
		or sysad depending on dir.
<pre>data_sel(2:0)</pre>	in	Source of MUX data. Exact meaning depends
		on the operation taking place.
mux_dir	in	Indicated source and destination of data,
		used with aen_mem, gio_sel and cpu_sel.
graphics(1:0)	in	determines whether to use grfxdly(2:0) or
		slvdly.

MUX Chip Specification

		0 - slvdly 1 - grxdly(0) 2 - grxdly(1) 3 - grxdly(2)
aen_mem	in	When cpu_sel = 1 enables flop used to catch data popped from the cpu write buffer during write operations to memory port A. when cpu_sel = 0 this is used to help indicate the source and destination of data.
ben_ctrl	in	When cpu_sel = 1 enables flop used to catch data popped from the cpu write buffer during write operations to memory port B. When cpu_sel = 0, is used to control GIO memory fifo.
cen_fifo	in	When cpu_sel = 1 enables data into the memory read and write flops. When cpu_sel = 0 is used to control GIO memory fifo.
giostb	in	Indicates that the GIO command which is made up of some of the above signals is valid and should be pushed onto the GIO command fifo.
par_flush	in	When cpu_sel = 1, generate bad parity on memory write data. When cpu_sel = 0, clean up state in MUX to complete the current memory operations and set up for the next memory operation.

2.3 GIO64 Signals.

masdly	in	Master delay signal.
slvdly	in	Slave delay signal.
grxdly(2:0)	in	Graphics delay signal. There are 3 of
		these signals.
mc_dly	in	For GIO slave reads from memory an early
		version of MC's delay signal. For GIO
		slave writes to memory a copy of MC's
		delay signal.

2.3 Clock Signals.

5		
gio_clk	in	GIO64 clock, 33 or 40 MHZ
gio_pll_lp1	out	PLL phase detector output
gio_pll_lp2	in	PLL loop filter from board
gio_pll_vdd	in	PLL power
gio_pll_gnd	in	PLL gnd
cpu_clk	in	Processor clock, 50-65 MHZ
cpu_pll_lp1	out	PLL phase detector output
cpu_pll_lp2	in	PLL loop filter from board
cpu_pll_vdd	in	PLL power
cpu_pll_gnd	in	PLL gnd
pll_reset_n	in	PLL reset

2.4 Misc. Signals.

par_err(3:0) out Parity error detected on operation.

2.5 JTAG/ATPG Signals.

jtdi	in	JTAG data in
jtdo	out	JTAG data out
jtms	in	JTAG mode select
jtck	in	JTAG clock
tp0	in	JTAG tp0 mode select
tpl	in	JTAG tp1 mode select
entei	in	ATPG tristate enable inhibit

Pin	Number	Name	Туре	In	Out	Enable	Active
Pin	1 – C3	MC DLY	INPUT	255	0	0	
Pin	2 – E5	GIOSTB	TNPUT	248	0	0	
Din	2 _ 23 3 _ B3	GTOSEL	TNDIT	247	0	0	
Din	у <u>Б</u> у 4 — F6	610011	NC	0	0	0	
Din	5 - C4	GTO DATA 31	BIDIR	293	323	259	T.OW
Din	5 - D6	GIO_DATA_JI	NC	0	0	0	ЦОМ
Din	7 - D5		RTDTP	292	300	259	T.OW
Din	7 DJ 8 - E7	GIO_DATA_30	BIDIR	292	201	255	TOM
Din	0 E/	GIO_DATA_29	DOWED	290	0	239	TOM
PIII	9 — Б4 10 ДЕ		POWER	0	0	0	
PIII	10 - C5		POWER	0	0	0	TON
PIII	11 - B5	GIO_DATA_20	BIDIR	209	320	259	LOW
Pin	12 - A5	GIO_DATA_27	BIDIR	288	319	259	LOW
Pin	13 - C6	GIO_DATA_26	BIDIR	287	318	259	LOW
Pin	14 - B6	GIO_DATA_25	BIDIR	286	316	259	LOW
Pin	15 – D7	GIO_DATA_24	BIDIR	285	315	259	LOW
Pin	16 – A6	VSS	POWER	0	0	0	
Pin	17 – C7	VDD	POWER	0	0	0	
Pin	18 - E8		NC	0	0	0	
Pin	19 – B7	PAR_FLUSH	INPUT	246	0	0	
Pin	20 - D8	CPUSEL	INPUT	162	0	0	
Pin	21 – A7	GIO_DATA_23	BIDIR	284	314	260	LOW
Pin	22 - E9	GIO_DATA_22	BIDIR	283	313	260	LOW
Pin	23 - C8	GIO DATA 21	BIDIR	282	312	260	LOW
Pin	24 - D9	GIO DATA 20	BIDIR	281	311	260	LOW
Pin	25 – B8	GIO DATA 19	BIDIR	279	310	260	LOW
Pin	26 - C9	GTO DATA 18	BIDIR	278	309	260	LOW
Din	27 – A8	GTO DATA 17	BIDIR	277	308	260	
Din	28 - C10	GIO DATA 16	BIDIR	276	307	260	LOW
Din	20 _ 20	GIO DATA 15	BIDIR	275	305	261	LOW
Din	29 - B9 30 - E10	GIO_DATA_{IJ}	BIDIR	275	301	201	TOM
PIII	30 - EI0	GIO_DATA_14	DOWED	2/4	504	201	LOW
PIII	31 - B10	V22	POWER	0	0	0	
PIII	32 - D10	VDD	POWER	0	0	0	
Pin	33 - BII	VSS	POWER	0	0	0	
Pin	34 - DII	GIO_DATA_I3	BIDIR	273	303	261	LOW
Pin	35 - B12	GIO_DATA_12	BIDIR	272	302	261	LOW
Pin	36 - E11	GIO_DATA_11	BIDIR	271	301	261	LOW
Pin	37 - B13	GIO_DATA_10	BIDIR	270	300	261	LOW
Pin	38 - C11	GIO_DATA_9	BIDIR	268	299	261	LOW
Pin	39 - A14	GIO_DATA_8	BIDIR	267	298	261	LOW
Pin	40 - C12	GIO_DATA_7	BIDIR	266	297	262	LOW
Pin	41 - C13	GIO_DATA_6	BIDIR	265	296	262	LOW
Pin	42 - D12	GIO_DATA_5	BIDIR	264	325	262	LOW
Pin	43 - B14	GIO_DATA_4	BIDIR	294	324	262	LOW
Pin	44 - E12	VDD	POWER	0	0	0	
Pin	45 - A15	VSS	POWER	0	0	0	
Pin	46 - D13	GIO_DATA_3	BIDIR	291	317	262	LOW
Pin	47 - C14	GIO DATA 2	BIDIR	280	306	262	LOW
Pin	48 - E13	GIO DATA 1	BIDIR	269	326	262	LOW
Pin	49 - B15		NC	0	0	0	
Pin	50 - A16	VDD	POWER	0	0	0	
Pin	51 - C15	GTO DATA 0	BIDIR	263	295	262	TIOW
Din	52 - B16	GTO PAR 3	BIDIR	330	334	258	
Din	$52 - \Delta 17$	GIO PAR 2	BIDIR	329	221	258	LOW
Din	53 - 016	CIO DAR 1		370	220	250	TOM
r TII	5 = -CTO	GIO_FAR_I	UTUTU UTUTU	220 207	334 331	200	
гтII гтII	SS = BT	GIU_FAR_U	DIDIK	347 250	0 22T	200	тОм
ьтц ьтц	50 - DT0	GRAPHICS_1	TNPUT	∠5U 240	0	0	
PTU LTU	57 - D14	GRAPHICS_U	TNPUT	∠49 224	0	0	
FIN P.	50 - CI7	GKADLI_Z	TNP0.L	334	U	U	
Pin	59 - E14	GRXDLY_1	INPUT	253	U	U	
Pin	6U - B18	GRXDLY U	LNPUT	251	0	0	

Pin	Number	Name	Туре	In	Out	Enable	Active
Pin	61 - D15		NC	0	0	0	
Pin	62 - B19	GIO_PLL_LP1	PLL	0	0	0	
Pin	63 - E15	VDD	POWER	0	0	0	
Pin	64 - D17	VSS	POWER	0	0	0	
Pin	65 - C18	VSS	POWER	0	0	0	
Pin	66 - E16	GIO_PLL_LP2	PLL	0	0	0	
Pin	67 - C19	GIO_CLK	CLOCK	0	0	0	
Pin	68 - F16		NC	0	0	0	
Pin	69 - D18		NC	0	0	0	
Pin	70 - F17	GIO PLL AGND	PLL	0	0	0	
Pin	71 - E17	GIO PLL VSS	POWER	0	0	0	
Pin	72 - G16	GTO PLU VDD	POWER	0	0	0	
Din	73 – 19	MEM A 31	BIDIR	199	87	83	T.OW
Din	73 - E18	MEM A 30	BIDIR	198	88	83	LOW
Din	75 - D20	MEM A 29	BIDIR	197	89	83	LOW
Din	75 - E19	MEM_A_29	BIDIR	196	90	03	LOW
PIII	70 - E19	MEM_A_20	BIDIR	105	90	03	LOW
PIII	77 - F10	MEM_A_Z/	BIDIR	195	91	03	LOW
Pin	78 - E20	MEM_A_26	BIDIR	194	92	83	LOW
Pin	79 - G17		NC	0	0	0	
Pin	80 - F19		NC	0	0	0	
Pin	81 - H16	MEM_A_25	BIDIR	193	93	83	LOW
Pin	82 - G18	MEM_A_24	BIDIR	192	94	83	LOW
Pin	83 - H17	MEM_A_23	BIDIR	191	95	84	LOW
Pin	84 - F20	MEM_A_22	BIDIR	190	96	84	LOW
Pin	85 - J16	MEM_A_21	BIDIR	189	97	84	LOW
Pin	86 - G19	MEM_A_20	BIDIR	188	98	84	LOW
Pin	87 - J17	MEM A 19	BIDIR	187	99	84	LOW
Pin	88 - H18	MEM A 18	BIDIR	186	100	84	LOW
Pin	89 - J18	MEM A 17	BIDIR	185	101	84	LOW
Pin	90 - G20	MEM A 16	BIDIR	184	102	84	LOW
Pin	91 — к18		NC	0	0	0	
Din	92 - H19		NC	0	0	0	
Din	93 - K16		NC	0	0	0	
Din	94 - 119		NC	0	0	0	
Din	94 - 019		NC	0	0	0	
PIII	95 - K17	MEM A 1 F	NC	102	102		T ON
PIN	90 - K19	MEM_A_IS	BIDIR	100	103	05	LOW
PIII	97 - 117	MEM_A_14	BIDIR	102	104	05	LOW
Pin	98 - L19	MEM_A_I3	BIDIR	181	105	85	LOW
Pin	99 - LIG	MEM_A_12	BIDIR	180	106	85	LOW
Pin	100 - M19	MEM_A_II	BIDIR	179	107	85	LOW
Pin	101 - 118	MEM_A_10	BIDIR	178	108	85	LOW
Pin	102 - N20	MEM_A_9	BIDIR	177	109	85	LOW
Pin	103 - M18	MEM_A_8	BIDIR	176	110	85	LOW
Pin	104 - N19	MEM_A_7	BIDIR	175	111	86	LOW
Pin	105 - M17	MEM_A_6	BIDIR	174	112	86	LOW
Pin	106 - P20	PAR_ERR_3	OUTPUT	0	240	0	
Pin	107 - M16	PAR_ERR_2	OUTPUT	0	239	0	
Pin	108 - N18	PAR_ERR_1	OUTPUT	0	241	0	
Pin	109 - N17	PAR_ERR_0	OUTPUT	0	238	0	
Pin	110 - P19	VDD	POWER	0	0	0	
Pin	111 - N16	VSS	POWER	0	0	0	
Pin	112 - R20		NC	0	0	0	
Pin	113 - P18	MEM A 5	BIDIR	173	113	86	LOW
Pin	114 - R19	MEM A 4	BIDTR	172	114	86	LOW
Din	115 - T20	MEM A 3	BIDIR	171	115	86	LOW
Din	116 - 218	MEM A 2	BIDIR	170	116	86	T.OM
D 1 20	$117 - \pi^{10}$	$MEM = \lambda = 1$	BIDIK	160	117	86	TOM
D 1 ~	118 _ II9		UTUTK UTUTK	166	110	86	
LTIJ	$\pm \pm 0 = 020$	יייםייי_A_U אדא א מער א	ATATA	160	110	00	TOM
PIN	170 <u>1</u> 10	MEM_A_PAR_3	RIDIK	167	120	ŏ∠ ΩΩ	LOW
гıп	120 - UI9	MEM_A_PAK_Z	RIDIK	10/	⊥∠U	oγ	тОм

Pin Number	Name	Type	In 	Out	Enable	Active
Pin 121 - P17	MEM_A_PAR_1	BIDIR	201	121	82	LOW
Pin 122 - T17	MEM_A_PAR_0	BIDIR	200	122	82	LOW
Pin 123 - P16	TP1	TEST	0	0	0	
Pin 124 - U18	TP0	TEST	0	0	0	
Pin 125 - R17		NC	0	0	0	
Pin 126 - V19	JTDO	JTAG	0	0	0	
Pin 127 - R16	JTMS	J'I'AG	0	0	0	
P1n 128 - V18	VSS DII DECEE N	POWER	0	0	0	
PIII 129 = 017 Pin 130 = T16	PLL_RESEI_N FNTFT	PLL TROT	0	0	0	
Pin 131 - W19	JULI		0	0	0	
Pin 132 - T15	0121	NC	0	0	0	
Pin 133 - W18	JTCK	JTAG	0	0	0	
Pin 134 - U15	CPU_MEM_OE	INPUT	163	0	0	
Pin 135 - V17	MEM_B_31	BIDIR	235	123	78	LOW
Pin 136 - T14	MEM_B_30	BIDIR	234	124	78	LOW
Pin 137 - U16	MEM_B_29	BIDIR	233	125	78	LOW
Pin 138 - W17	MEM_B_28	BIDIR	232	126	78	LOW
Pin 139 - V16	MEM_B_27	BIDIR	231	127	78	LOW
Pin 140 - W16	MEM_B_26	BIDIR	230	128	.78	LOW
Pin 141 - X16		NC	0	0	0	
Pin 142 - V15 Din 142 - W15	VDD MEM D 25	POWER	0	U 129	U 79	T OW
PIII 143 - W13 Din 144 - U14	MEM_B_23 MEM_B_24	BIDIR	229	130	78	LOW
Pin 145 - T13	MEM_B_23	BIDIR	220	131	79	LOW
Pin 146 - X15	MEM B 22	BIDIR	226	132	79	LOW
Pin 147 - U13	MEM B 21	BIDIR	225	133	79	LOW
Pin 148 - V14		NC	0	0	0	
Pin 149 - T12	MEM_B_20	BIDIR	224	134	79	LOW
Pin 150 - W14	MEM_B_18	BIDIR	222	136	79	LOW
Pin 151 - U12	MEM_B_19	BIDIR	223	135	79	LOW
Pin 152 - X14	MEM_B_17	BIDIR	221	137	79	LOW
Pin 153 - V12	MEM_B_16	BIDIR	220	138	79	LOW
Pin 154 - V13		NC	0	0	0	
Pin 155 - VII	CEN_FIFU	INPUT	161	0	0	
PIII 150 - WI3 Din 157 - T11	BEN_CIRL	NC	160	0	0	
Pin 157 - 111 Pin 158 - X13		NC	0	0	0	
Pin 159 - U11	AEN MEM	INPUT	159	0	0	
Pin 160 - W12	MEM B 15	BIDIR	219	139	80	LOW
Pin 161 - U10	MEM_B_14	BIDIR	218	140	80	LOW
Pin 162 - W11	MEM_B_13	BIDIR	217	141	80	LOW
Pin 163 - T10	MEM_B_12	BIDIR	216	142	80	LOW
Pin 164 - W10	MEM_B_11	BIDIR	215	143	80	LOW
Pin 165 - V10	MEM_B_10	BIDIR	214	162	80	LOW
Pin 166 - W9	MEM_B_9	BIDIR	213	145	80	LOW
Pin 167 - V9	MEM_B_8	BIDIR	212	146	80	LOW
Pin 168 - W8	MEM_B_/	BIDIR	211	14/ 140	81 01	LOW
$\frac{PIH}{Pin} \frac{109}{170} - \frac{109}{170}$	MEM_B_0 ATA SFI 2	BIDIR	210	140	0	LOW
Pin 170 = T9	DATA_SEL_Z DATA SEL 1	TNPUT	245	0	0	
Pin 172 - V8	DATA_SEL_1 DATA_SEL_0	TNPUT	243	0	0	
Pin 173 - U8	READ	INPUT	256	0	0	
Pin 174 - W7	VDD	POWER	0	0	0	
Pin 175 - T8	VSS	POWER	0	0	0	
Pin 176 - X6	MEM_B_5	BIDIR	209	149	81	LOW
Pin 177 - V7	MEM_B_4	BIDIR	208	150	81	LOW
Pin 178 - W6	MEM_B_3	BIDIR	207	151	81	LOW
Pin 179 - X5	MEM_B_2	BIDIR	206	152	81	LOW
Pin 180 - V6	MEM_B_1	BIDIR	205	153	81	LOW

Pin Number	Name	Туре	In	Out	Enable	Active
			 0			
PIII 101 - W3 Pin 182 - X4	MEM B 0	RIDIR	202	154	0 81	T.OW
Pin 183 - V5		POWER	0	0	0	LOW
Pin 184 - W4	VSS	POWER	0	0	0	
Pin 185 - U7	MEM B PAR 3	BIDIR	204	155	82	LOW
Pin 186 - U5	MEM_B_PAR_2	BIDIR	203	156	82	LOW
Pin 187 - T7	MEM_B_PAR_1	BIDIR	237	157	82	LOW
Pin 188 - V4	mem_b_par_0	BIDIR	236	158	82	LOW
Pin 189 - U6		NC	0	0	0	
Pin 190 - W3	RESET_N	INPUT	242	0	0	
Pin 191 - T6	VDD	POWER	0	0	0	
Pin 192 - V3	VSS	POWER	0	0	0	
Pin 193 - 04	CPU_PLL_VDD	POWER	0	0	0	
PIII 194 = 15 Pin 195 = W2	CPU_PLL_VSS	POWER	0	0	0	
Pin 196 - R5	CF0_CHK	NC	0	0	0	
Pin 197 - V2		NC	0	0	0	
Pin 198 - R4	CPU PLL LP2	PLL	0	0	0	
Pin 199 - U3	 CPU_PLL_LP1	PLL	0	0	0	
Pin 200 - P5	CPU_PLL_AGND	PLL	0	0	0	
Pin 201 - T4	MUX_DIR	INPUT	165	0	0	
Pin 202 - U2	CPU_PUSH	INPUT	164	0	0	
Pin 203 - T3	VSS	POWER	0	0	0	
Pin 204 - U1	VDD4	POWER	0	0	0	
Pin 205 - T2	SYSAD_31	BIDIR	29	61	76	LOW
Pin 206 - R3	SYSAD_30	BIDIR	28 26	6U E 9	/6 76	LOW
PIII 207 = 11 Pin 208 = P4	SISAD_29 SVSAD_28	BIDIR	20	50	76	LOW
Pin 200 - R2	SYSAD 27	BIDIR	2.4	56	76	LOW
Pin 210 - N5	51512_27	NC	0	0	0	2011
Pin 211 - P3	SYSAD 26	BIDIR	23	55	76	LOW
Pin 212 - N4		NC	0	0	0	
Pin 213 - R1	VSS	POWER	0	0	0	
Pin 214 - M5	VSS	POWER	0	0	0	
Pin 215 - P2	VDD4	POWER	0	0	0	
Pin 216 - M4	SYSAD_24	BIDIR	21	53	76	LOW
Pin 217 - N3	SYSAD_25	BIDIR	22	54	76	LOW
PIII 210 - M3	SISAD_23	BIDIR	∠U 19	52 51	75 75	LOW
Pin 219 - Pi Pin 220 - L3	SYSAD_22 SYSAD_21	BIDIR	18	50	75	LOW
Pin 220 - N2	SYSAD 20	BIDIR	17	49	75	LOW
Pin 222 - L5	SYSAD 19	BIDIR	15	47	75	LOW
Pin 223 - M2	SYSAD_18	BIDIR	14	46	75	LOW
Pin 224 - L4	SYSAD_17	BIDIR	13	45	75	LOW
Pin 225 - L2	SYSAD_16	BIDIR	12	44	75	LOW
Pin 226 - K4		NC	0	0	0	
Pin 227 - K2	VDD4	POWER	0	0	0	
Pin 228 - K5	SYSAD_15	BIDIR		43	74	LOW
Pin 229 - J2	SYSAD_14	BIDIR	10	4Z 41	74	LOW
PIII 230 - K3 Pin 231 - H1	SIGAD_IS SVGAD_12	BIDIR	8	40	74	TOM
Pin 232 - T_3	SYSAD 11	BIDIR	7	39	74	LOW
Pin 233 - H2	~ - ~	NC	0	0	0	
Pin 234 - J4	SYSAD_10	BIDIR	6	38	74	LOW
Pin 235 - H3	SYSAD_9	BIDIR	35	67	74	LOW
Pin 236 - J5	SYSAD_8	BIDIR	34	66	74	LOW
Pin 237 - G1	SYSAD_7	BIDIR	33	65	73	LOW
Pin 238 - H4	SYSAD_6	BIDIR	32	64	73	LOW
Pin 239 - G2	VDD4	POWER	U	U	U	
Pin 240 - H5	VSS2_4	POWER	U	U	U	

Pin Number	Name	Туре	In	Out	Enable	Active
Pin 241 - G3	SYSAD_5	BIDIR	31	63	73	LOW
Pin 242 - F1	SYSAD_4	BIDIR	30	62	73	LOW
Pin 243 - F2	SYSAD_3	BIDIR	27	59	73	LOW
Pin 244 - F3	SYSAD_2	BIDIR	16	48	73	LOW
Pin 245 - El	SYSAD_1	BIDIR	36	68	73	LOW
Pin 246 - E2	SYSAD_0	BIDIR	5	37	73	LOW
Pin 247 - E3	SYSAD_PAR_3	BIDIR	3	71	77	LOW
Pin 248 - G4		NC	0	0	0	
Pin 249 - D2	SYSAD_PAR_2	BIDIR	2	70	77	LOW
Pin 250 - G5	SYSAD_PAR_1	BIDIR	4	72	77	LOW
Pin 251 - D3	SYSAD_PAR_0	BIDIR	1	69	77	LOW
Pin 252 - F4	VDD4	POWER	0	0	0	
Pin 253 - C2	VSS	POWER	0	0	0	
Pin 254 - E4	MASDLY	INPUT	254	0	0	
Pin 255 - B2	SLVDLY	INPUT	257	0	0	
Pin 256 - F5	VDD3	POWER	0	0	0	
Pin 257 - D4		NC	0	0	0	

The pin number column shows the pin number/grid array location of each signal pin. The type column shows the direction of each signal pin.

The in/out columns show the position of each signal pin within the top level boundary scan chain.

The Enable column shows the position of each bidirectional signal pin's output enable control signal within the top level boundary scan chain.

The active columns the polarity for each output enable control signal.

For example, the input flop of SYSAD_5 is the thirty-first element in the top level boundary scan chain, and the output flop of SYSAD_5 is the sixty-third element in the scan chain. The enable signal for SYSAD_5 is active low and is the seventy-third element in the top level scan chain.

4.0 MUX Pin Cross-Reference Listing (240 Pin Package)

Pin	Number	Name	Туре	In	Out	Enable	Active
Pin	1 - 1	VDD	POWER	0	0	0	
Pin	2 - 2	MC_DLY	INPUT	255	0	0	
Pin	3 - 3	GIOSTB	INPUT	248	0	0	
Pin	4 - 4	GIOSEL	INPUT	247	0	0	
Pin	5 - 5	GIO_DATA_31	BIDIR	293	323	259	LOW
Pin	6 — б	GIO_DATA_30	BIDIR	292	322	259	LOW
Pin	7 – 7	GIO_DATA_29	BIDIR	290	321	259	LOW
Pin	8 - 8	VSS	POWER	0	0	0	
Pin	9 – 9	VDD	POWER	0	0	0	
Pin	10 - 10	GIO_DATA_28	BIDIR	289	320	259	LOW
Pin	11 - 11	GIO_DATA_27	BIDIR	288	319	259	LOW
Pin	12 - 12	GIO_DATA_26	BIDIR	287	318	259	LOW
Pin	13 - 13	GIO_DATA_25	BIDIR	286	316	259	LOW
Pin	14 - 14	GIO DATA 24	BIDIR	285	315	259	LOW
Pin	15 - 15	VSS	POWER	0	0	0	
Pin	16 - 16	VDD	POWER	0	0	0	
Pin	17 - 17	PAR FLUSH	INPUT	246	0	0	
Pin	18 - 18	CPUSEL	INPUT	162	0	0	
Pin	19 - 19	GIO DATA 23	BIDIR	284	314	260	LOW
Pin	20 - 20	GIO DATA 22	BIDIR	283	313	260	LOW
Pin	21 - 21	GIO DATA 21	BIDIR	282	312	260	LOW
Pin	22 - 22	GIO DATA 20	BIDIR	281	311	260	LOW
Pin	23 - 23	GTO DATA 19	BIDIR	279	310	260	
Pin	23 - 24	GIO DATA 18	BIDIR	278	309	260	LOW
Din	25 - 25	GIO DATA 17	BIDIR	277	308	260	LOW
Din	25 - 25	GIO DATA 16	BIDIR	276	307	260	LOW
Din	20 - 20 27 - 27	GIO DATA 15	BIDIR	275	305	261	LOW
Din	28 - 28	GIO DATA 14	BIDIR	275	304	261	LOW
Din	20 - 20		POWER	0	0	0	LOW
Pin	30 - 30	VSS	POWER	0	0	0	
Din	30 - 30 31 - 31	VSS3	POWER	0	0	0	
Din	32 - 32	GTO DATA 13	BIDIR	273	303	261	T.OW
Din	32 - 32	GIO DATA 12	BIDIR	273	302	261	LOW
Din	33 - 34	GIO DATA 11	BIDIR	272	301	261	LOW
Din	35 - 35	GIO DATA 10	BIDIR	271	300	261	LOW
Din	36 - 36	GIO DATA 9	BIDIR	268	299	261	T.OM
Din	30 - 30	GIO DATA 8	BIDIR	260	298	261	LOW
Din	38 - 38	GIO DATA 7	BIDIR	266	297	262	LOW
Din	39 - 39	GIO DATA 6	BIDIR	265	296	262	T.OM
Din	40 - 40	GIO DATA 5	BIDIR	265	325	262	LOW
Din	40 - 40	GIO DATA 4	BIDIR	201	323	262	T.OM
Din	42 - 42		DIDIR	0	0	0	HOM
Din	43 - 43	VSS	DOWER	0	0	0	
Din	44 - 44	CIO DATA 3	BIDIR	291	317	262	T.OM
Din	45 - 45	GIO DATA 2	BIDIR	280	306	262	T.OM
Din	46 - 46	GIO_DATA_1	BIDIR	269	326	262	LOW
Din	40 - 40	GIO DATA O	BIDIR	263	295	262	T.OM
Din	48 - 48	CIO DAR 3	BIDIR	330	334	258	LOW
Din	40 40	GIO_FAR_3	BIDIR	320	223	258	LOW
Din	49 49 50 - 50	CIO DAR 1	BIDIR	222	222	250	TOM
Din	50 - 50	GIO_FAK_I	BIDIR	320	331	258	LOW
Din	$5 \pm 51 = 52$	CRADHICS 1	TNDIT	250	0	0	
Din	52 - 52	CDADHICG 0		220	0	0	
	53 - 53	CDVDIV 2	TNPUT	272 221	0	0	
гтп Div		CDVDIV 1	TNEOT	254 252	0	0	
P 1 11	55 - 55 56 - 56		TNFUT	200 051	0	0	
P;∼	50 - 50 E7 E7	GIADUI_U	TINEOT	0 Z J T	0	0	
D¦∼ ⊾TU		AUN GIOTATTTTT	г ПОмішь ЧПП	0	0	0	
P;∼	00 - 00		POWER	0	0	0	
Pi~	59 - 59	פפע בתתע	POWER	0	0	0	
F 1 11	00 - 00	V L L J		11	11	V.	

Pin	Number	Name	Туре	In	Out	Enable	Active
Din	61 - 61		DOMEB	0	0	0	
Din	62 - 62	VSS	DOWER	0	0	0	
Din	63 - 63		DIT	0	0	0	
Din	64 - 64	GIO CI'R GIO_LIII_ILS	CI OCK	0	0	0	
Din	65 - 65	GIO_BLI. AGND	DLL	0	0	0	
Din	66 - 66	GIO_PLL_AGND	PUL	0	0	0	
Din	60 - 60		POWER	0	0	0	
PIN	67 - 67	GIO_PLL_VDD MEM D 21	POWER	100	0	0	TOW
PIII	60 - 60	MEM_A_SI	BIDIR	199	07	03	LOW
PIN	09 - 09	MEM_A_SU	BIDIR	190	00	03	LOW
PIII	70 - 70	MEM_A_29	BIDIR	197	09	03	LOW
Din	71 - 71	MEM_A_20 MEM_A_27	BIDIR	196	90	03	LOW
Pin		MEM_A_Z/	BIDIK	193	91	03	LOW
Din	75 - 75	MEM_A_20	DOWED	194	92	0.5	LOW
Pin	74 - 74 75 75		POWER	0	0	0	
Din	75 = 75 76 = 76		POWER	102	02	0	T OM
Pin	70 - 70	$MEM_A_2 J$	BIDIK	102	93	03	LOW
Din	77 - 77	MEM_A_24 MEM_A_22	BIDIR	192	94	0.5 Q.1	LOW
Din	70 - 70	MEM_A_25 MEM_A_22	BIDIR	191	95	04	LOW
Din	79 = 79	MEM_A_22 MEM_A_21	BIDIR	190	90	04 97	LOW
Din	00 - 00	MEM_A_ZI MEM_A_20	BIDIR	109	97	04	LOW
Din	01 - 01	MEM_A_ZO	BIDIR	107	90	04	LOW
Din	02 - 02 92 - 92	MEM_A_19 MEM_A_19	BIDIR	196	99 100	04 97	LOW
Din	03 - 03	MEM_A_10 MEM_D_17	BIDIR	100	101	04	LOW
PIN	04 - 04 0E 0E	MEM_A_17 MEM_D_16	BIDIR	101	101	04	LOW
Din	05 - 05 06 06		DOWED	104	102	04	LOW
Din	80 - 80	V333 V22	POWER	0	0	0	
Din	88 _ 88		POWER	0	0	0	
Din	89 - 89	νυυ Μεμ λ 15	POWER	183	103	85	T.OW
Din	90 - 90	MEM_A_15	BIDIR	182	104	85	LOW
Din	90 = 90	MEM_A_14 MEM_A_12	BIDIR	102	104	85	LOW
Din	91 - 91	MEM_A_13 MEM_A_12	BIDIR	190	105	85	LOW
Din	92 - 92	MEM_A_IZ MEM_A_11	BIDIR	170	107	85	LOW
Din	93 - 93	MEM_A_II MEM A 10	BIDIR	179	107	85	LOW
Din	94 - 94	MEM_A_IO MEM A 9	BIDIR	177	100	85	LOW
Din	96 - 96	$MEM_A 9$	BIDIR	176	110	95	LOW
Din	90 - 90	MEM_A_0 MEM_A_7	BIDIR	175	111	86	LOW
Din	98 - 98	MEM_A_ /	BIDIR	174	112	86	LOW
Din	99 - 99	PAR ERR 3		0	240	0	HOW
Din	100 - 100	DAR FRR 2		0	239	0	
Din	100 - 100	PAR ERR 1		0	241	0	
Din	102 - 102	PAR ERR ()		0	238	0	
Pin	103 - 103		POWER	0	0	0	
Pin	104 - 104	VSS	POWER	0	0	0	
Pin	105 - 105	MEM A 5	BIDIR	173	113	86	T.OW
Pin	106 - 106	MEM A 4	BIDIR	172	114	86	LOW
Pin	107 - 107	MEM A 3	BIDIR	171	115	86	LOW
Pin	108 - 108	MEM A 2	BIDIR	170	116	86	LOW
Pin	109 - 109	MEM A 1	BIDIR	169	117	86	LOW
Pin	110 - 110	MEM A 0	BIDIR	166	118	86	LOW
Pin	111 - 111	MEM A PAR 3	BIDIR	168	119	82	LOW
Pin	112 - 112	 MEM A PAR 2	BIDIR	167	120	82	LOW
Pin	113 - 113	MEM A PAR 1	BIDIR	201	121	82	LOW
Pin	114 - 114	 MEM A PAR 0	BIDIR	200	122	82	LOW
Pin	115 - 115	 TP1	TEST	0	0	0	
Pin	116 - 116	TPO	TEST	0	0	0	
Pin	117 - 117	JTDO	JTAG	0	0	0	
Pin	118 - 118	JTMS	JTAG	0	0	0	
Pin	119 - 119	VSS	POWER	0	0	0	
Pin	120 - 120	VDD	POWER	0	0	0	

Pin Number	Name	Туре	In	Out	Enable	Active
Din 121 - 121	2003	DOMER	0	0	0	
Pin 122 - 122	PLI RESET N	PLT.	0	0	0	
Pin 123 - 123	ENTET	OTHER	0	0	0	
Pin 124 - 124	TUTT	JTAG	0	0	0	
Pin 125 - 125	JTCK	JTAG	0	0	0	
Pin 126 - 126	CPIL MEM OF	TNPUT	163	0	0	
Pin 127 - 127	MEM B 31	BIDIR	235	123	78	TOW
Pin 128 - 128	MEM B 30	BIDIR	234	124	78	LOW
Pin 129 - 129	MEM B 29	BIDIR	233	125	78	LOW
Pin 130 - 130	MEM B 28	BIDIR	232	126	78	LOW
Pin 131 - 131	MEM B 27	BIDIR	231	127	78	LOW
Pin 132 - 132	MEM B 26	BIDIR	230	128	78	LOW
Pin 133 - 133	VSS	POWER	0	0	0	
Pin 134 - 134	VDD	POWER	0	0	0	
Pin 135 - 135	MEM B 25	BIDIR	229	129	78	LOW
Pin 136 - 136	MEM B 24	BIDIR	228	130	78	LOW
Pin 137 - 137	MEM B 23	BIDIR	227	131	79	LOW
Pin 138 - 138	MEM B 22	BIDIR	226	132	79	LOW
Pin 139 - 139	MEM B 21	BIDIR	225	133	79	LOW
Pin 140 - 140	MEM B 20	BIDIR	224	134	79	LOW
Pin 141 - 141	 MEM B 19	BIDIR	223	135	79	LOW
Pin 142 - 142	MEM B 18	BIDIR	222	136	79	LOW
Pin 143 - 143	 MEM B 17	BIDIR	221	137	79	LOW
Pin 144 - 144	MEM_B_16	BIDIR	220	138	79	LOW
Pin 145 - 145	CEN_FIFO	INPUT	161	0	0	
Pin 146 - 146	BEN CTRL	INPUT	160	0	0	
Pin 147 - 147	AEN MEM	INPUT	159	0	0	
Pin 148 - 148	VSS2	POWER	0	0	0	
Pin 149 - 149	VSS3	POWER	0	0	0	
Pin 150 - 150	VDD	POWER	0	0	0	
Pin 151 - 151	MEM_B_15	BIDIR	219	139	80	LOW
Pin 152 - 152	MEM_B_14	BIDIR	218	140	80	LOW
Pin 153 - 153	MEM_B_13	BIDIR	217	141	80	LOW
Pin 154 - 154	MEM_B_12	BIDIR	216	142	80	LOW
Pin 155 - 155	MEM_B_11	BIDIR	215	143	80	LOW
Pin 156 - 156	MEM_B_10	BIDIR	214	162	80	LOW
Pin 157 - 157	MEM_B_9	BIDIR	213	145	80	LOW
Pin 158 - 158	MEM_B_8	BIDIR	212	146	80	LOW
Pin 159 - 159	MEM_B_7	BIDIR	211	147	81	LOW
Pin 160 - 160	MEM_B_6	BIDIR	210	148	81	LOW
Pin 161 - 161	DATA_SEL_2	INPUT	244	0	0	
Pin 162 - 162	DATA_SEL_1	INPUT	245	0	0	
Pin 163 - 163	DATA_SEL_0	INPUT	243	0	0	
Pin 164 - 164	READ	INPUT	256	0	0	
Pin 165 - 165	VDD	POWER	0	0	0	
Pin 166 - 166	VSS	POWER	0	0	0	
Pin 167 - 167	MEM_B_5	BIDIR	209	149	81	LOW
Pin 168 - 168	MEM_B_4	BIDIR	208	150	81	LOW
Pin 169 - 169	MEM_B_3	BIDIR	207	151	81	LOW
Pin 170 - 170	MEM_B_2	BIDIR	206	152	81	LOW
Pin 171 - 171	MEM_B_1	BIDIR	205	153	81	LOW
Pin 172 - 172	MEM_B_0	BIDIR	202	154	81	LOW
Pin 173 - 173	MEM_B_PAR_3	BIDIR	204	155	82	LOW
Pin 174 - 174	MEM_B_PAR_2	BIDIR	203	156	82	LOW
Pin 175 - 175	MEM_B_PAR_1	BIDIR	237	157	82	LOW
Pin 176 - 176	MEM_B_PAR_0	BIDIR	236	128	82	LOW
Pin 177 - 177	RESET_N	INPUT	242	U	0	
Pin 178 - 178		POWER	U	U	U	
Pin 1/9 - 1/9		POWER	0	0	0	
FTH TOA - TOA		FOWER	U	U	U	

Pin Number	Name	Туре	In	Out	Enable	Active
 Din 181 - 181		DOMEB	0	0	0	
Pin $182 - 182$	CPII PLI, VDD	POWER	0	0	0	
Pin 183 - 183	CPU PLL VSS	POWER	0	0	0	
Pin 184 - 184	CPU CLK	CLOCK	0	0	0	
Pin 185 - 185	CPU PLL LP2	PLL	0	0	0	
Pin 186 - 186	CPU PLL LP1	PLL	0	0	0	
Pin 187 - 187	CPU PLL AGND	PLL	0	0	0	
Pin 188 - 188	MUX DIR	INPUT	165	0	0	
Pin 189 - 189	CPU PUSH	INPUT	164	0	0	
Pin 190 - 190	VSS	POWER	0	0	0	
Pin 191 - 191	VDD4	POWER	0	0	0	
Pin 192 - 192	SYSAD 31	BIDIR	29	61	76	LOW
Pin 193 - 193	SYSAD 30	BIDIR	28	60	76	LOW
Pin 194 - 194	SYSAD 29	BIDIR	26	58	76	LOW
Pin 195 - 195	SYSAD 28	BIDIR	25	57	76	LOW
Pin 196 - 196	SYSAD 27	BIDIR	24	56	76	LOW
Pin 197 - 197	SYSAD_26	BIDIR	23	55	76	LOW
Pin 198 - 198	VSS	POWER	0	0	0	
Pin 199 - 199	VDD4	POWER	0	0	0	
Pin 200 - 200	SYSAD_25	BIDIR	22	54	76	LOW
Pin 201 - 201	SYSAD_24	BIDIR	21	53	76	LOW
Pin 202 - 202	SYSAD_23	BIDIR	20	52	75	LOW
Pin 203 - 203	SYSAD_22	BIDIR	19	51	75	LOW
Pin 204 - 204	SYSAD_21	BIDIR	18	50	75	LOW
Pin 205 - 205	SYSAD_20	BIDIR	17	49	75	LOW
Pin 206 - 206	SYSAD_19	BIDIR	15	47	75	LOW
Pin 207 - 207	SYSAD_18	BIDIR	14	46	75	LOW
Pin 208 - 208	SYSAD_17	BIDIR	13	45	75	LOW
Pin 209 - 209	SYSAD_16	BIDIR	12	44	75	LOW
Pin 210 - 210	VSS	POWER	0	0	0	
Pin 211 - 211	VSS3_4	POWER	0	0	0	
Pin 212 - 212	VDD4	POWER	0	0	0	
Pin 213 - 213	SYSAD_15	BIDIR	11	43	74	LOW
Pin 214 - 214	SYSAD_14	BIDIR	10	42	74	LOW
Pin 215 - 215	SYSAD_13	BIDIR	9	41	74	LOW
Pin 216 - 216	SYSAD_12	BIDIR	8	40	74	LOW
Pin 217 - 217	SYSAD_11	BIDIR	./	39	74	LOW
Pin 218 - 218	SYSAD_10	BIDIR	6	38	74	LOW
Pin 219 - 219	SYSAD_9	BIDIR	35	67	74	LOW
P1n 220 - 220	SISAD_8	BIDIR	34	66 C F	/4 72	LOW
PIN 221 - 221	SISAD_/	BIDIR	33	65	/3 72	LOW
PIII 222 - 222		DOWED	52	04	0	TOM
PIII 223 - 223 $Din 224 - 224$		POWER	0	0	0	
Din 224 224	V552_1 SVS70 5	BIDIB	31	63	0 73	T.OW
Pin 225 225	SISAD_J A DASYS	BIDIR	30	62	73	T'OM
Din 220 - 220	SIGAD_1	BIDIR	27	59	73	LOW
Pin 228 - 228	SYSAD 2	BIDIR	16	48	73	LOW
Pin 220 = 220	SYSAD 1	BIDIR	36	68	73	LOW
Pin 230 - 230	SYSAD 0	BIDIR	5	37	73	LOW
Pin 231 - 231	SYSAD PAR 3	BIDIR	3	71	77	LOW
Pin 232 - 232	SYSAD PAR 2	BIDIR	2	70	77	LOW
Pin 233 - 233	SYSAD PAR 1	BIDIR	4	72	77	LOW
Pin 234 - 234	SYSAD PAR 0	BIDIR	1	69	77	LOW
Pin 235 - 235	VDD4	POWER	0	0	0	
Pin 236 - 236	VSS	POWER	0	0	0	
Pin 237 - 237	MASDLY	INPUT	254	0	0	
Pin 238 - 238	SLVDLY	INPUT	257	0	0	
Pin 239 - 239	VDD3	POWER	0	0	0	
Pin 240 - 240		NC	0	0	0	

5.0 MUX Output Drive Strengths

The Following table shows the drive strengths and associated LSI100K IO components for the MUX outputs:

Bus	LSI IO Component	Drive Strength	Voltage
SYSAD	BD4TL	4 mA TTL	3 Volt
GIO(3116)	BD8TRPU	8 mA TTL w/ Pullup	5 Volt
		(moderate Slew Rate Control)	
GIO(150)	BD8TRP	8 mA TTL	5 Volt
		(moderate Slew Rate Control)	
MEM_A	BD4T	4 mA TTL	5 Volt
MEM_B	BD4T	4 mA TTL	5 Volt
PAR_ERR	BT4M	4 mA TTL w/ Tri-State enable	5 Volt
JTDO	В4	4 mA	5 Volt

6.0 MUX Input Buffers

The Following table shows the input buffers used for each MUX input signal:

Signal	LSI IO Component	Notes
SYSAD	BD4TL	3 Volt
GIO(3116)	BD8TRPU	Pulled-up
GIO(310)	BD8TRP	
MEM_A	BD4T	
MEM_B	BD4T	
GIOSEL	TLCHT	
CPUSEL	TLCHT	
CPU_PUSH	TLCHT	
CPU_MEM_OE	TLCHT	
DATA_SEL	TLCHT	
MUX_DIR	TLCHT	
GRAPHICS	TLCHT	
AEN_MEM	TLCHT	
BEN_CTRL	TLCHT	
CEN_FIFO	TLCHT	
GIOSTB	TLCHT	
PAR_FLUSH	TLCHT	
MASDLY	TLCHT	
SLVDLY	TLCHT	
MC_DLY	TLCHT	
READ	TLCHT	
GRXDLY	TLCHT	
GIO_CLK	DDRV	
CPU_CLK	DDRV	
RESET_N	TLCHT	
JTDI	TLCHTU	Pulled-up
JTMS	TLCHTU	Pulled-up
PLL_RESET_N	TLCHTU	Pulled-up
TP0	TLCHTU	Pulled-up
TP1	TLCHTU	Pulled-up
ENTEI	TLCHN	Inverted
PLL_VSS	RDDRV	
PLL_VDD	RDDRV	
PLL_LP2	RDDRVPD	
PLL_AGND	RDDRVO	

7.0 MUX Set-up Times

The Following tables shows the setup times for the MUX inputs:

Signal	<u>Set-up Time(ns)</u>
SYSAD	5.18 (to cpu_clk)
GIO	3.81 (to gio_clk)
MEM_A	4.71 (to cpu_clk)
MEM_A	4.10 (to gio_clk)
MEM_B	4.71 (to cpu_clk)
MEM_B	4.10 (to gio_clk)
CPU_PUSH	3.65 (to cpu_clk)
CPU_MEM_OE	3.76 (to cpu_clk)
DATA_SEL	3.50 (to gio_clk)
DATA_SEL	3.67 (to cpu_clk)
MUX_DIR	3.65 (to gio_clk)
MUX_DIR	3.82 (to cpu_clk)
GRAPHICS	3.99 (to gio_clk)
AEN_MEM	3.53 (to gio_clk)
AEN_MEM	3.70 (to cpu_clk)
BEN_CTRL	3.51 (to gio_clk)
BEN_CTRL	3.68 (to cpu_clk)
CEN_FIFO	3.56 (to gio_clk)
CEN_FIFO	3.73 (to cpu_clk)
GIOSTB	3.51 (to gio_clk)
PAR_FLUSH	3.78 (to gio_clk)
PAR_FLUSH	3.95 (to cpu_clk)
MASDLY	3.58 (to gio_clk)
SLVDLY	3.67 (to gio_clk)
MC_DLY	3.60 (to gio_clk)
READ	3.45 (to gio_clk)
GRXDLY	13.88 (to gio_clk)

8.0 MUX Hold Times

The Following tables shows the hold times for the MUX inputs:

Signal	Hold	l Tin	ne(ns)
SYSAD	-2.78	(to	cpu_clk)
GIO	-1.61	(to	gio_clk)
MEM_A	-2.58	(to	cpu_clk)
MEM_A	-1.87	(to	gio_clk)
MEM_B	-2.59	(to	cpu_clk)
MEM_B	-1.87	(to	gio_clk)
CPU_PUSH	-1.80	(to	cpu_clk)
CPU_MEM_OE	-1.73	(to	cpu_clk)
DATA_SEL	-1.46	(to	gio_clk)
DATA_SEL	-1.58	(to	cpu_clk)
MUX_DIR	-1.80	(to	gio_clk)
MUX_DIR	-1.80	(to	cpu_clk)
GRAPHICS	-2.21	(to	gio_clk)
AEN_MEM	-1.65	(to	gio_clk)
AEN_MEM	-1.65	(to	cpu_clk)
BEN_CTRL	-1.64	(to	gio_clk)
BEN_CTRL	-1.64	(to	cpu_clk)
CEN_FIFO	-1.69	(to	gio_clk)
CEN_FIFO	-1.69	(to	cpu_clk)
GIOSTB	-1.83	(to	gio_clk)
PAR_FLUSH	-1.97	(to	gio_clk)
PAR_FLUSH	-1.97	(to	cpu_clk)
MASDLY	-1.72	(to	gio_clk)
SLVDLY	-1.83	(to	gio_clk)
MC_DLY	-1.74	(to	gio_clk)
READ	-1.55	(to	gio_clk)
GRXDLY	-2.65	(to	gio_clk)

9.0 MUX Output Delays

The Following table shows the MUX output delays for 50 $\ensuremath{\text{pF}}$ loading:

Signal	<u>Worse Case Output Delay (ns)</u>
SYSAD	14.26 (from cpu_clk)
MEM_A	21.42 (from cpu_clk)
MEM_A	21.43 (from gio_clk)
MEM_B	22.07 (from cpu_clk)
MEM_B	21.63 (from gio_clk)
GIO_DATA	13.85 (from gio_clk)

10.0 MUX Rev 1.2 Changes

The original spin of MUX contained a bug where bad parity was inadvertantly written to memory. The source of this bug lies with the definition of the par_flush signal, which is a multiplexed control line. When cpu_sel is asserted, an active par_flush signal will generate bad parity storage for CPU writes to memory. When gio_sel is asserted, an active par_flush signal will flush the gio command fifo, gio write buffer and gio read buffer. In the original version of MUX, when par_flush was asserted to flush the gio side of the chip and a CPU write occurred while par_flush was still asserted, bad parity would be generated for the CPU data to memory because par_flush was not qualified with cpu_sel. An AND gate was added in the second spin of MUX to qualify par_flush with cpu_sel in determining when to generate intentional bad parity.

11.0 MUX Problems

There is a know problem that is believed to be with DMUX but the root cause of the problem is not completely known. The problem is when bad parity is generated by CPU writes to memory when the par_flush signal is asserted it appears to mess up the GIO memory fifo. This was found in IDE, when the parity test was run followed by the SCSI test, the SCSI test would sometime fail. If a VDMA was done between the parity and SCSI test that gets preempted the SCSI test always passes.

12.0 MUX Power

The DMUX power was measured in a Blackjack system.

3.3V	10	mΑ	33 mW
5.0V	250	mΑ	1250 mW
Total			1.28 W

13.0 Corrections and Additions

June 25, 1992:

- a. csize64 is no longer an input pin.
- b. depth of cpu write buffer is 32 entries deep
- c. added expanded cpu write buffer drawing
- d. added expanded gio write buffer drawing
- e. added expanded gio read buffer drawing
- f. data_sel(2) is used during gio reads to determine whether to turn off gio bus drivers
- g. added specification of jtag and pll pins
- h. added MUX pin cross-reference listing for both packages
- i. added MUX rev 1.2 changes
- j. added MUX output drive strengths
- k. added MUX input buffers
- 1. added MUX setup/hold times
- m. added MUX output delays

DMUX Chip Specification R4000 Project

Draft 2.5 May 13, 2000

James Tornes Prasad Paranjpe Scott Sellers

Silicon Graphics Inc.

SGI Confidential Do Not Copy

Table of Contents

1.0 Introduction	1
1.1 MUX Block Diagram	2
1.2 Operation Select	2
1.3 Memory Reads and Writes By The CPU	4
1.3.1 Processor Writes To Memory	4
1.3.2 Processor Reads From Memory	8
1.4 GIO Operations	10
1.4.1 Processor Reads From GIO64/EISA	10
1.4.2 Processor Writes To GIO64	12
1.4.3 GIO Writes To Memory	14
1.4.4 GIO Reads From Memory	17
2.0 Mux Pins	20
2.1 Data Buses	20
2.2 MUX Control Signals 20-	-21
2.3 GI064 Signals	21
2.4 Misc. Signals	21
2.5 JTAG/ATPG Signals	22
2.0 MW Din Guard Defension (200 Din Dechand)	
3.0 MOX PIN Cross-Reference (299 Pin Package)	23
4.0 MUX Pin Cross-Reference (240 Pin Package)	28
5.0 MUX Output Drive Strengths	32
6.0 MUX Input Buffers	33
7.0 MUX Set-up Times	34
8.0 MUX Hold Times	35
9.0 MUX Output Delays	36
10.0 MUX Rev 1.2 Changes	37
11.0 MUX Problems	37
12.0 MUX Power	37
13.0 Additions and Corrections	38