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1 Introduction

This document describes the REX3, part of the Newport (“the least graphics you’ll ever need”) graphics sub-
system.

1.1 Part Name and Number

Part Name: REX3
SGI Part Number: 099-9005-001
Vendor: LSI Logic Corporation
Vendor Part Number: L1A9040
Technology: LC300K (0.6 micron CMOS gate array)
Base Wafer: L300415P
Package: 304 MQUAD
Gate Count:149,000 equivalent gates, including 5.7K bits dual port RAM.

1.2 General Description

REX3 is the raster engine for Newport graphics. The basic operation of the raster engine is to draw
lines and spans. Various packed formats of host DMA are also supported. It is based on some of the con-
cepts of REX1, i.e there is no dedicated geometry engine for graphics. Instead, the hosts floating point unit
is used as the geometry engine. Like REX1, Z buffering is done by the host in system memory. REX3’s reg-
ister interface has been optimized for minimum host writes to execute primitives. REX3 has various pixel
formats to accommodate a low cost 8 bits/pixel system as well as a 24 bits/pixel system. Besides the pixel
planes REX3 supports CID, PUP and Overlay planes. Also, in order to achieve high frame buffer writing
bandwidth, the frame buffer is architected as an 8 way interleave combined with a Y axis interleave. There
are two sets of RGBA iterators so 2 shaded pixels/clock are generated. For flat filled spans, four pixels/clock
are generated. In order to bound the package size to less than 304 pins, the frame buffer data is byte seri-
alized for each of the eight interleaves. This data is deserialized by RB2s’ before writing to the frame buffer.
In order to limit the number of gates in REX3, the read/write formaters and the logicop functions have been
incorporated into RB2s.

1.3 Features

• 33 MHz GIO64 Bus Interface

• 66 MHz Isotropic 8 way interleaved frame Buffer Interface

• 33MHz Display Bus Interface with synchronous / asynchronous / burst mode slave support

• Bresenham  line iterators

• RGB and CI anti-aliased Bresenham lines

• Bi-endian support

• Software Z buffer

• Blend function

• 1280 x 1024 resolution

• Upto 76Hz screen refresh

• Upgradable from 8 pixel + 2PUP + 2CID planes to 24 pixel + 8 Overlay(or 4+4) + 2PUP + 2CID planes

• Optional Express Video ready
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• GenLock capability

1.4 Newport Architecture

Newport graphics is made of the following major components:

1. REX3
2. RB2
3. Frame buffer
4. RO1
5. XMAP9
6. CMAP
7. VC2
8. RAMDAC
9. Static Ram

The graphics pipeline begins with the host writing into the REX3 registers to execute   primitives. REX3
transforms these primitives into screen coordinates and writes the data via RB2 into the frame buffer. The
frame buffer is made of Vrams (2MBit) in an 8 way interleave configuration. The serial ports of the frame
buffer are read into RO1 and passed into XMAP9 which manipulates the data for multi mode screen. XMAP9
passes the data onto the CMAP which consists of high speed static ram for Color Index modes. When in
RGB mode, the data goes through other static ram within CMAP that is normally linearly mapped, although
for image processing applications it does not have to be linearly mapped. The output of CMAP is fed into
the RAMDAC for display to the screen. The gamma correction tables reside in the RAMDAC. The output of
the CMAPs is also fed back to XMAP9 and output onto the Video port. Video data can also be accepted
from the video port and output to the CMAP to display on the graphics monitor. VC2 provides all the relevant
timing for the graphics sub system.
A block diagram of the Newport graphics sub-system is shown in Figure 1.

1.5 REX3 Architecture

Figure 2 shows the top level block diagram of REX3. REX3 could be viewed as three logical blocks. The
first block, which interface to the host bus (GIO64) is the GIO block. REX3 supports both GIO64 and GIO32
protocol, the default being GIO64. The GIO64 bus may be either 64 or 32 bits wide. This block receives
commands for all the primitives that REX3 draws as well as provide host access to other devices in the dis-
play and video (optional) subsystems. REX3 is implemented as a GIO64 bus slave which decodes
addresses on the GIO64 bus to detect accesses to its own registers, or those within the Video subsystem.
Commands and data to and from the Display subsystem are sent over the Display Control Bus. The REX3
is the master of the Display Control Bus. The second block is the iterator block. This block generates the
frame buffer addresses, interpolates the colors and provides masking and various patterning capabilities.
The pixel address generation for lines is done by Bresenham iterators. This block also handles the coverage
values for anti - aliased lines and does the swizzle for the frame buffer interleaving. The third section is the
memory controller and pixel pipe. There are four instances of the memory controller and pixel pipe. This
block has the frame buffer controller as well as the CID checking, color compare, dither and Blend functions.
The GIO and Iterator sections operate at 33MHz and the memory controller and the pixel pipe operates at
66MHz. The GIO interface with the host is via a fifo which is 64 wide and 32 deep. The high water mark on
the GIO fifo is programmable. The Iterator section communicates to the memory controller and pixel pipe
via 4 bank fifos. Each bank fifo consists of one write and two read fifos. For screen to screen copy operations
the Iterator section generates a read into the read bank fifos and swizzles the data before writing it into the
write bank fifos. The memory controller operates each of the 4 banks independent of each other. The mem-
ory is cycled in 4 clocks (60nS) for page mode operations. Figure 3 shows the internal data path of REX3.
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1.6 Performance

Table 1: REX3  Performance

                       Operation      Performance

Shaded spans 50M pixels/sec

Flat-filled spans 100M pixels/sec

Fastclear 400M pixels/sec

DMA 50M pixels/sec

Screen to Screen copy 40M pixels/sec

Depthcued or constant color linedraw rate20M pixels/sec

10 pixel RGB Anti-aliased lines 200K lines/sec

Random points 6M points/sec
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FIGURE 2. REX3 top-level block diagram
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FIGURE 3. REX3 Internal Data Path
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2 Device Interface

2.1 Pin Diagram

FIGURE 4. REX3 Pin Diagram
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2.2 Pin Descriptions

The following tables list for each REX3 pin the assertion level, direction (I, O, I/O), LSI IO cell type, followed
by  a brief functional description.

TABLE 2. GIO64 Bus Interface

TABLE 3. VRAM/RB2/REORG Interface

Pin Name Level Type Function

P_AD[63:0] NA I/O(BD8TRPU) 64-bit pipelined Address/data bus

P_AS_N L I(TLCHT) Asserted during an Address cycle on the GIO bus.

P_READ NA I(TLCHT) Indicates the direction of the data transfer during Address cycles.
After the Address cycle, P_READ is driven low to indicate that an
active bus cycle is taking place. The GIO64 bus master preempts
a transaction by asserting P_READ.

GRXDLY H O(BT8RP) When asserted, this signal indicates that for read data cycles, the
REX3 is not returning valid data on the P_AD bus. For write
cycles, the REX3 asserts GRXDL Y when the next transfer on the
on the non-pipelined side of the GIO64 bus must be stalled (one
more word will be accepted by the REX3).

MEMDLY H I(TLCHT) When deasserted during write data cycles, this signal indicates
that the host is presenting valid data on the GIO64 bus. When
asserted during read data cycles, this signal indicates that the
host cannot accept data from the REX3 during the next cycle.

FIFO_INT_N L O(BT4OD) REX3 GFIFO/BFIFO above/below interrupt (Open Drain).

VV_INT_N L O(BT4OD) VC2 Vertical retrace or Kaleidoscope V ideo Option interrupt
(Open Drain).

SLOT_NUMBER[1:0] NA I(TLCHT) Address bits [23:22] of the Newport graphics board. Address bits
[31:24] = “0001_1 111”.

GIORESET_N L I(TLCHT) Synchronous reset.

GIO64CLK NA I(CMOS) Positive GIO64 bus clock. All GIO64 bus signals are clocked on
the rising edge of this signal.

Pin Name Type Function

VRAM_RAS_[A:D] O(B4) VRAM RAS, for the four memory banks[A:D]

VRAM_ADDR_[A:D][8:0] O(BT4RP) VRAM Address bus

VRAM_DTOE_N_[A:D] O(BT4RP) VRAM Transfer Enable / Output Enable.

VRAM_DSF1_[A:D] O(BT4RP) VRAM special function control pin.

VRAM_WBWE_N_[A:D] O(B4) VRAM bank write enable (active low).

VRAM_CAS_[A:D]_0 O(BT4RP) VRAM CAS for the even halves of the four memory banks

VRAM_CAS_[A:D]_1 O(BT4RP) VRAM CAS for the odd halves of the four memory banks

RB2_SEL_[A:D][2:0] O(B4) Operation selects for the four memory banks.  Encoded as
follows: 000 NOOP

001 Write (4 components), lower pixel into OL Y planes
010 Write higher pixel into OL Y planes
011 Load write mask and partial DRA WMODE1 Regs
100 Read (4 components), lower pixel of OL Y planes
101 Read higher pixel of OL Y planes
110 Read lower pixel CID bits (for CID checking)
111 Read higher CID bits (for CID checking)

RB2_DATA_[A:D]_0[7:0] I/O(BD8TRPU) RB2 data for the even halves of the four memory banks

RB2_DATA_[A:D]_1[7:0] I/O(BD8TRPU) RB2 data for the odd halves of the four memory banks

VC_TX_REQ I(TLCHT) Transfer request

VC_SET_TSC I(TLCHT) Set top of scan.

RO_Y_DISP[1:0] O(BT4RP) Scanline (modulo-4) for staggering the frame buffer
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TABLE 4. Display Control Bus Interface

TABLE 5. Miscellaneous Back-End Pins

TABLE 6. ASIC Mandatory PLL and T est Pins

Pin Name Level Type Function

DCB_DATA[7:0] NA I/O(BD8TRPU) Data read from (DCB_R W_N = 1) or written (DCB_R W_N = 0) to the
Display Control Bus slave devices.

DCB_ADDR[3:0] NA O(BT4RP) Display Control Bus slave device Address.

DCB_CRS[2:0] NA O(BT8RP) Display Control Bus slave device command or register select field.

DCB_RW_N NA O(BT8RP) Read/Write direction signal.

DCB_CS_N NA O(BT4RP) Display Control Bus command strobe, indicating that valid
DCB_ADDR, DCB_CRS, DCB_R W_N and, for write transfers,
DCB_DATA are on the bus.

DCB_ACK_N L I(IBUFN) Acknowledge signal for Display Control Bus slaves to handshake
transfers with the REX3. When asserted during write cycles,
DCB_ACK_N indicates that the slave device has accepted the
DCB_DATA, and that the next Display Control Bus cycle may begin.
During read cycles, the Display Control Bus slave asserts
DCB_ACK to indicate that it has placed valid data on the DCB_DA TA
lines.

Pin Name Level Type Function

VERT_INT_N L I(IBUFN) Vertical retrace/sync interrupt from VC2

VIDEO_INT_N L I(IBUFN) Interrupt from Express V ideo option

Pin Name Level Type Function

JTAG_TDI NA I(TLCHTU) Scan Test Data In

JTAG_TMS NA I(TLCHTU) Scan Test Mode Select.  Selects the scan input of all flip-flops
when driven low .  Driven high for normal operation.

JTAG_TCK NA I(TLCHTU) Scan Test Clock

JTAG_TDO NA O(B2) Scan Test Data/Parametric NAND tree/PLL T est Clock Out

TEI NA I(TLCHN) I/O pin tristate enable.  When driven low , all bidirectional pins and
tri-state unidirectional pins are forced into high impedance state.
Driven high for normal operation.

TP[1:0] NA I(TLCHT) PLL/Scan T est Mode. Encoded as follows:
00 Normal Operation.  VCO ripple counter output -> JT AG_TDO
01 PLL bypass mode.  Scan chain output -> JT AG_TDO
10 PLL bypass mode.  Parametric NAND tree -> JT AG_TDO
11 Scan mode.  JT AG_TCK drives all flops.  Scan chain
     output -> JT AG_TDO.  VCO is disabled for IDD test

PLL_RESET_N L I(TLCHT) PLL Reset.  The loop filter output is grounded when asserted

LP1 NA O(DDRVO) PLL Charge Pump Output / Loop Filter Input

LP2 NA I/O(RDDRVPD) PLL VCO input / Loop Filter Output

AVDD NA I(RDDRV) PLL Analog VDD

AVSS NA I(RDDRV) PLL Analog VSS

AGND NA O(RDDRVO) PLL Analog Ground
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2.3 VHDL Description

This section describes the device level interface to the REX3 as a VHDL entity.
entitiy REX3 is

port(
--GIO64 Bus interface (74 pins)

P_AD : inout mvl7w_vector (63 downto 0);
P_AS_N : in mvl7w;
P_READ : in mvl7w;
GRXDLY : out mvl7w;
MEMDLY : in mvl7w;
FIFO_INT_N : out mvl7w;
VV_INT_N : out mvl7w;
SLOT_NUMBER : in mvl7w_vector (1 downto 0);
GIORESET_N : in mvl7w;
GIO64CLK : in mvl7w;

--VRAM/RB2/REORG Interface (140 pins)
VRAM_RAS_A: out mvl7w;
VRAM_ADDR_A : out mvl7w_vector (8 downto 0);
VRAM_DTOE_N_A : out mvl7w;
VRAM_DSF1_A : out mvl7w;
VRAM_WBWE_N_A : out mvl7w;
VRAM_CAS_A_0 : out mvl7w;
VRAM_CAS_A_1 : out mvl7w;
RB2_SEL_A : out mvl7w_vector (2 downto 0);
RB2_DATA_A_0 : inout mvl7w_vector (7 downto 0);
RB2_DATA_A_1 : inout mvl7w_vector (7 downto 0);
VRAM_RAS_B : out mvl7w;
VRAM_ADDR_B : out mvl7w_vector (8 downto 0);
VRAM_DTOE_N_B : out mvl7w;
VRAM_DSF1_B : out mvl7w;
VRAM_WBWE_N_B : out mvl7w;
VRAM_CAS_B_0 : out mvl7w;
VRAM_CAS_B_1 : out mvl7w;
RB2_SEL_B : out mvl7w_vector (2 downto 0);
RB2_DATA_B_0 : inout mvl7w_vector (7 downto 0);
RB2_DATA_B_1: inout mvl7w_vector (7 downto 0);
VRAM_RAS_C : out mvl7w;
VRAM_ADDR_C : out mvl7w_vector (8 downto 0);
VRAM_DTOE_N_C : out mvl7w;
VRAM_DSF1_C : out mvl7w;
VRAM_WBWE_N_C : out mvl7w;
VRAM_CAS_C_0 : out mvl7w;
VRAM_CAS_C_1 : out mvl7w;
RB2_SEL_C : out mvl7w_vector (2 downto 0);
RB2_DATA_C_0 : inout mvl7w_vector (7 downto 0);
RB2_DATA_C_1 : inout mvl7w_vector (7 downto 0);
VRAM_RAS_D : out mvl7w;
VRAM_ADDR_D : out mvl7w_vector (8 downto 0);
VRAM_DTOE_N_D : out mvl7w;
VRAM_DSF1_D : out mvl7w;
VRAM_WBWE_N_D : out mvl7w;
VRAM_CAS _D_0 : out mvl7w;
VRAM_CAS _D_1 : out mvl7w;
RB2_SEL_D : out mvl7w_vector (2 downto 0);
RB2_DATA_D_0 : inout mvl7w_vector (7 downto 0);
RB2_DATA_D_1 : inout mvl7w_vector (7 downto 0);
VC_TX_REQ : in mvl7w;
VC_SET_TSC : in mvl7w;
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RO_Y_DISP : out mvl7w_vector (1 downto 0);
--Display Control Bus Interface (18 pins)

DCB_ADDR : out mvl7w_vector (3 downto 0);
DCB_DATA : inout mvl7w_vector (7 downto 0);
DCB_CRS : out mvl7w_vector (2 downto 0);
DCB_CS_N : out mvl7w;
DCB_RW_N : out mvl7w;
DCB_ACK_N : in mvl7w;

--Miscellaneous Back End pins (2 pins)
VERT_INT_N : in mvl7w;
VIDEO_INT_N : in mvl7w;

--ASIC Mandatory pins (13 pins)
TEI : in mvl7w; --External tri-state control
JTAG_TDI : in mvl7w;
JTAG_TMS : in mvl7w;
JTAG_TCK : in mvl7w;
JTAG_TDO : out mvl7w;
TP : in mvl7w_vector (1 downto 0);
PLL_RESET_N : in mvl7w;
LP1 : out mvl7w;
LP2 : in mvl7w;
AGND : out mvl7w;
AVSS : in mvl7w;
AVDD : in mvl7w

);
end REX3;

2.4 Package Pin Assignment

The following list of package pin assignments is from the LSI Logic LBOND program.  The REX3 is mounted
in a 304 MQUAD cavity down package, and pins are numbered by LSI  in a counter-clockwise manner when
viewing the die.  When mounted (cavity down) on the PC board, pins are also numbered in a counter-clock-
wise fashion.  Therefore, the printed circuit board pin number is equal to (305-LSI pin number).

Pin Number   Signal Name

1 vdd
2 p_ad_10
3 p_ad_11
4 p_ad_12
5 p_ad_13
6 p_ad_14
7 vss
8 p_ad_15
9 p_ad_16
10 p_ad_17
11 p_ad_18
12 p_ad_19
13 vdd
14 p_ad_20
15 p_ad_21
16 p_ad_22
17 p_ad_23
18  p_ad_24
19 vss
20 gio64clkx
21 pll_reset_n
22 lp1
23 lp2
24 agnd
25 avdd
26 avss
27 p_ad_25
28 p_ad_26
29 p_ad_27
30 p_ad_28
31 p_ad_29
32 vdd
33 p_ad_30
34 p_ad_31
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35 p_as_n
36 p_read
37 p_memdly
38 p_grxdly
39 p_ad_32
40 p_ad_33
41 vdd
42 vss
43 vss
44 p_ad_34
45 p_ad_35
46 p_ad_36
47 p_ad_37
48 p_ad_38
49 vdd
50 p_ad_39
51 p_ad_40
52 p_ad_41
53 p_ad_42
54 p_ad_43
55 vss
56 p_ad_44
57 p_ad_45
58 p_ad_46
59 p_ad_47
60 p_ad_48
61 vdd
62 p_ad_49
63 p_ad_50
64 p_ad_51
65 p_ad_52
66 p_ad_53
67 vss
68 p_ad_54
69 p_ad_55
70 p_ad_56
71 p_ad_57
72 p_ad_58
73 vdd
74 p_ad_59
75 p_ad_60
76 vss
77 vdd
78 p_ad_61
79 p_ad_62
80 p_ad_63
81 slot_number_0
82 slot_number_1
83 tp_0
84 tp_1
85 video_int_n
86 vert_int_n
87 jtag_tms
88 jtag_tdi
89 jtag_tck
90 tei
91 jtag_tdo
92 ro_y_disp_0
93 ro_y_disp_1
94 vss
95 vc_tx_req
96 vc_set_tsc
97 rb2_data_a_0_0
98 rb2_data_a_0_1
99 rb2_data_a_0_2
100 rb2_data_a_0_3
101 rb2_data_a_0_4
102 vdd
103 rb2_data_a_0_5
104 rb2_data_a_0_6
105 vss
106 rb2_data_a_0_7
107 vram_wbwe_n_a
108 vram_dtoe_n_a
109 vram_dsf1_a
110 rb2_sel_a_0
111 rb2_sel_a_1
112 vdd
113 rb2_sel_a_2
114 vram_addr_a_0
115 vram_addr_a_1
116 vram_addr_a_2
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117 vram_addr_a_3
118 vss
119 vdd
120 vram_addr_a_4
121 vram_addr_a_5
122 vram_addr_a_6
123 vram_addr_a_7
124 vram_addr_a_8
125 vss
126 vram_ras_a
127 vram_cas_a_0
128 vram_cas_a_1
129 rb2_data_a_1_0
130 rb2_data_a_1_1
131 vdd
132 rb2_data_a_1_2
133 rb2_data_a_1_3
134 rb2_data_a_1_4
135 rb2_data_a_1_5
136 rb2_data_a_1_6
137 vss
138 rb2_data_a_1_7
139 rb2_data_b_0_0
140 vdd
141 rb2_data_b_0_1
142 rb2_data_b_0_2
143 rb2_data_b_0_3
144 rb2_data_b_0_4
145 rb2_data_b_0_5
146 vss
147 rb2_data_b_0_6
148 rb2_data_b_0_7
149 vram_wbwe_n_b
150 vram_dtoe_n_b
151 vram_dsf1_b
152 vdd
153 vss
154 rb2_sel_b_0
155 rb2_sel_b_1
156 rb2_sel_b_2
157 vram_addr_b_0
158 vdd
159 vram_addr_b_1
160 vram_addr_b_2
161 vram_addr_b_3
162 vram_addr_b_4
163 vram_addr_b_5
164 vss
165 vram_addr_b_6
166 vram_addr_b_7
167 vram_addr_b_8
168 vram_ras_b
169 vram_cas_b_0
170 vdd
171 vram_cas_b_1
172 rb2_data_b_1_0
173 rb2_data_b_1_1
174 rb2_data_b_1_2
175 rb2_data_b_1_3
176 vss
177 rb2_data_b_1_4
178 rb2_data_b_1_5
179 rb2_data_b_1_6
180 rb2_data_b_1_7
181 rb2_data_c_0_0
182 vdd
183 rb2_data_c_0_1
184 rb2_data_c_0_2
185 rb2_data_c_0_3
186 rb2_data_c_0_4
187 rb2_data_c_0_5
188 vss
189 rb2_data_c_0_6
190 rb2_data_c_0_7
191 vram_wbwe_n_c
192 vram_dtoe_n_c
193 vram_dsf1_c
194 vdd
195 vss
196 rb2_sel_c_0
197 rb2_sel_c_1
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198 rb2_sel_c_2
199 vram_addr_c_0
200 vram_addr_c_1
201 vdd
202 vram_addr_c_2
203 vram_addr_c_3
204 vram_addr_c_4
205 vram_addr_c_5
206 vram_addr_c_6
207 vss
208 vram_addr_c_7
209 vram_addr_c_8
210 vram_ras_c
211 vram_cas_c_0
212 vram_cas_c_1
213 vdd
214 rb2_data_c_1_0
215 rb2_data_c_1_1
216 rb2_data_c_1_2
217 rb2_data_c_1_3
218 rb2_data_c_1_4
219 vss
220 rb2_data_c_1_5
221 rb2_data_c_1_6
222 rb2_data_c_1_7
223 rb2_data_d_0_0
224 rb2_data_d_0_1
225 vdd
226 rb2_data_d_0_2
227  rb2_data_d_0_3
228 vss
229 vdd
230 rb2_data_d_0_4
231 rb2_data_d_0_5
232 rb2_data_d_0_6
233 rb2_data_d_0_7
234 vram_wbwe_n_d
235 vss
236 vram_dtoe_n_d
237 vram_dsf1_d
238 rb2_sel_d_0
239 rb2_sel_d_1
240 rb2_sel_d_2
241 vdd
242 vram_addr_d_0
243 vram_addr_d_1
244 vram_addr_d_2
245 vram_addr_d_3
246 vss
247 vram_addr_d_4
248 vram_addr_d_5
249 vram_addr_d_6
250 vram_addr_d_7
251 vram_addr_d_8
252 vdd
253 vram_ras_d
254 vram_cas_d_0
255 vram_cas_d_1
256 rb2_data_d_1_0
257 rb2_data_d_1_1
258 rb2_data_d_1_2
259 vss
260 rb2_data_d_1_3
261 rb2_data_d_1_4
262 rb2_data_d_1_5
263 rb2_data_d_1_6
264 rb2_data_d_1_7
265 vdd
266 vss
267 dcb_data_0
268 dcb_data_1
269 dcb_data_2
270 dcb_data_3
271 dcb_data_4
272 vdd
273 dcb_data_5
274 dcb_data_6
275 dcb_data_7
276 dcb_crs_0
277  dcb_crs_1
278 vss
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279 dcb_crs_2
280 dcb_rw_n
281 vdd
282 dcb_cs_n
283 dcb_addr_0
284 dcb_addr_1
285 dcb_addr_2
286 dcb_addr_3
287 vss
288 dcb_ack_n
289 vv_int_n
290 fifo_int_n
291 vss
292 gioreset_n
293 p_ad_0
294 p_ad_1
295 p_ad_2
296 p_ad_3
297 p_ad_4
298 vdd
299 p_ad_5
300 p_ad_6
301 p_ad_7
302 p_ad_8
303 p_ad_9
304 vss
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3 Programmer Interface

3.1 Registers

Table 7 lists the host accessible registers in REX3.

Addresses shown are an offset from the base GIO address of 0x1FnF0000, where n=(0,4,8,C), depending
upon the strapping of the GIO64 SLOT_NUMBER(1:0) pins.  Address offsets beginning with 0x1nnn are
intended to map corresponding registers into a separate “protected” page.

Access to address + 0x0800 issues primitive GO command.

Type “⊗” registers are not passed through either BFIFO or GFIFO, and force an immediate action when writ-
ten to.

Type “◊” registers are associated with the Display Control Bus and go through BFIFO.

Registers other than type “⊗”  and “◊” are associated with the graphics context and go through GFIFO.

Writes to type  “•” registers will stall at the output of GFIFO until the graphics pipeline is idle.

Type “2c” indicates twos-complement value.

Type “sm” indicates signed magnitude value.

Write/Read format bit grouping is shown with location of binary point, (for COLOR registers, 24-bit mode
binary point shown).  “s” refers to sign bit and “o” refers to overflow bit.  Parenthesis are used to indicate a
place holder for unused bits.

Write format “#” denotes write-only command address.

Unused bits return 0 when read.
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Address Name Type Write Read Description
0x0000 DRAWMODE1 • 32 32 Draw mode bits.
0x0004 DRAWMODE0 24 24 Draw instruction and mode bits.
0x0008 LSMODE 28 28 Line stipple mode register.
0x000C LSPATTERN 32 32 Line stipple pattern, (msb = first pixel).
0x0010 LSPATSAVE 32 32 Copy of LSPATTERN for pattern restore (LSRESTORE).
0x0014 ZPATTERN 32 32 Pattern register, (msb = first pixel).
0x0018 COLORBACK • 32 32 AGBR/CI opaque patterning color or blendfunction destination color.
0x001C COLORVRAM • 32 32 VRAM FASTCLEAR color, (set DRAWDEPTH and RGBMODE first).
0x0020 ALPHAREF • 8 8 AFUNCTION reference alpha value.
0x0024 STALL0 • # Forces stall at the output of GFIFO until graphics pipeline is idle.
0x0028 SMASK0X 2c 16,16 16,16 Screenmask 0:  min, max boundaries, (window relative GL smask).
0x002C SMASK0Y 2c 16,16 16,16 Screenmask 0:  min, max boundaries, (window relative GL smask).
0x0030 SETUP # Performs line/span setup without iteration (ignore DOSETUP).
0x0034 STEPZ # Enables ZPATTERN (Z test fail) for one iteration, (current pixel).
0x0038 LSRESTORE # Updates LSPATTERN/LSRCOUNT with LSPATSAVE/LSRCNTSAVE.
0x003C LSSAVE # Updates LSPATSAVE/LSRCNTSAVE with LSPATTERN/LSRCOUNT.
0x0100 XSTART 2c 16.4(7) 16.4(7) Iterator X start-point (current), full state for context switch.
0x0104 YSTART 2c 16.4(7) 16.4(7) Iterator Y start-point (current), full state for context switch.
0x0108 XEND 2c 16.4(7) 16.4(7) Iterator X endpoint, full state for context switch.
0x010C YEND 2c 16.4(7) 16.4(7) Iterator Y endpoint, full state for context switch.
0x0110 XSAVE 2c 16 16 Copy of XSTART integer value for BLOCK addressing MODE.
0x0114 XYMOVE 2c • 16,16 16,16 X,Y offset from XSTART,YSTART for relative operations (Scr2Scr).
0x0118 BRESD 2c 19.8 19.8 Bresenham “d” error term, for context switch.
0x011C BRESS1 2c 2.15 2.15 Antialiased Bresenham “s1” coverage term, for context switch.
0x0120 BRESOCTINC1 3(4),17.3 3(4),17.3 Bresenham octant & “incr1” error term increment value, for cntx switch.
0x0124 BRESRNDINC2 2c 8(3),18.3 8(3),18.3 Bresenham 8-bit octant rounding mode (msb == octant 1, lsb == octant 8)

& Bresenham “incr2” error term increment value, for context switch.
0x0128 BRESE1 1.15 1.15 Bresenham “e1” constant (minor slope) for antialiased line draw.
0x012C BRESS2 2c 18.8 18.8 Antialiased Bresenham “s2” coverage term, for context switch.
0x0130 AWEIGHT0 8 x 4 8 x 4 First half of 16x4-bit antialiased RGB/CI line weight table.
0x0134 AWEIGHT1 8 x 4 8 x 4 Second half of 16x4-bit antialiased RGB/CI line weight table.
0x0138 XSTARTF 12.4(7) GL version of XSTART, (zeros 4 msbs).
0x013C YSTARTF 12.4(7) GL version of YSTART, (zeros 4 msbs).
0x0140 XENDF 12.4(7) GL version of XEND, (zeros 4 msbs).
0x0144 YENDF 12.4(7) GL version of YEND, (zeros 4 msbs).
0x0148 XSTARTI 2c 16 Integer format for XSTART.
0x014C XENDF1 12.4(7) Same as XENDF.
0x0150 XYSTARTI 2c 16,16 Packed integer format for XSTART & YSTART.
0x0154 XYENDI 2c 16,16 Packed integer format for XEND & YEND.
0x0158 XSTARTENDI 2c 16,16 Packed integer format for XSTART & XEND.

Table 7:   REX3 host visible registers.
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0x0200 COLORRED o12.11 o12.11 Red/CI shade full state (CI modes = o8.11, o4.11; RGB  red = o8.15, etc.).
o12.9 12-bit CI mode shade.  (Must first init  DRAWMODE1 RGBMODE  and

DRAWDEPTH fields  to set this register write mode; not for ctxt restore.)

0x0204 COLORALPHA o8.11 o8.11 Full state of alpha shade.
0x0208 COLORGRN o8.11 o8.11 Full state of green shade.
0x020C COLORBLUE o8.11 o8.11 Full state of blue shade.
0x0210 SLOPERED sm

2c
s(7)12.11

13.11
Red/CI DDA slope: “s” =1 on write denotes sm to 2c conversion, in which
case 12.11 result is computed; always “s” is placed into msb of 13.1 field.

0x0214 SLOPEALPHA sm
2c

s(11)8.11
9.11

Alpha DDA slope: “s” =1 on write denotes sm to 2c conversion, in which
case 8.11 result is computed; always “s” is placed into msb of 9.1 field.

0x0218 SLOPEGRN sm
2c

s(11)8.11
9.11

Green DDA slope: “s” =1 on write denotes sm to 2c conversion, in which
case 8.11 result is computed; always “s” is placed into msb of 9.1 field.

0x021C SLOPEBLUE sm
2c

s(11)8.11
9.11

Blue DDA slope: “s” =1 on write denotes sm to 2c conversion, in which
case 8.11 result is computed; always “s” is placed into msb of 9.1 field.

0x0220 WRMASK • 24 24 Write mask for pixel, OLAY, or PUP/CID planes, (lsbs for 8-bit system).
0x0224 COLORI 24 Packed BGR or CI color registers -- zeros fractions.  (Must program

DRAWMODE1 RGBMODE bit first to set color register write mode.)
0x0228 COLORX 12.11 Color index shade, zeros overflow bit.
0x022C SLOPERED1 sm s(7)13.11 Same as SLOPERED.
0x0230 HOSTRW0 32 32 Host PIO/DMA data port, most significant word.
0x0234 HOSTRW1 32 32 Host PIO/DMA data port, least significant word.
0x0238 DCBMODE ◊ 29 29 Display control bus mode register.
0x0240 DCBDATA0 ◊ 32 32 Display control bus data port, most significant word.
0x0244 DCBDATA1 ◊ 32 32 Display control bus data port, least significant word.
0x1300 SMASK1X 2c • 16,16 16,16 Screenmask 1:  min, max boundary  (screen absolute:  X11 directionality).
0x1304 SMASK1Y 2c • 16,16 16,16 Screenmask 1:  min, max boundary.
0x1308 SMASK2X 2c • 16,16 16,16 Screenmask 2:  min, max boundary  (screen absolute:  X11 directionality).
0x130C SMASK2Y 2c • 16,16 16,16 Screenmask 2:  min, max boundary.
0x1310 SMASK3X 2c • 16,16 16,16 Screenmask 3:  min, max boundary  (screen absolute:  X11 directionality).
0x1314 SMASK3Y 2c • 16,16 16,16 Screenmask 3:  min, max boundary.
0x1318 SMASK4X 2c • 16,16 16,16 Screenmask 4:  min, max boundary  (screen absolute:  X11 directionality).
0x131C SMASK4Y 2c • 16,16 16,16 Screenmask 4:  min, max boundary.
0x1320 TOPSCAN 10 10 Y address for top of screen scan line, (0,1023=top,bottom of framebuffer).
0x1324 XYWIN 2c 16,16 16,16 Screen X,Y offset for window relative addressing and coordinate biasing.
0x1328 CLIPMODE • 13 13 CID, screenmask mode and enable bits.
0x132C STALL1 • # Forces stall at the output of GFIFO until graphics pipeline is idle.
0x1330 CONFIG ⊗ 21 21 Miscellaneous configuration bits.
0x1338
0x133C

STATUS
USER_STATUS

⊗
⊗

20
20

Chip busy and FIFO status register.  Reading clears interrupt status bits.
Chip busy and FIFO status register for User code.  Non-destructive reads.

0x1340 DCBRESET ⊗ # Resets the DCB bus state machine and flushes BFIFO.

Address Name Type Write Read Description

Table 7:   REX3 host visible registers.



SILICON GRAPHICS PROPRIETARY and CONFIDENTIAL

August 13, 1993  page23

3.1.1 Control Register Bit Definitions

The following tables outline the definition of REX3 control register bits.  Refer to related sections in Chapter
3 for discussion of the REX3 drawing, masking, and pixel I/O programming interface.

3.1.1.1 DRAWMODE0 Register

Bits Name Access Init Active Description
1:0 OPCODE(1:0) R/W 0x0 Primitive function command.
4:2 ADRMODE(2:0) R/W 0x0 Primitive function addressing mode.
5 DOSETUP R/W 0x0 H Enables SPAN/BLOCK/I_LINE/F_LINE/A_LINE  iterator setup.
6 COLORHOST R/W 0x0 H RGB/CI draw source:  0=DDAs; 1=HOSTRW register.
7 ALPHAHOST R/W 0x0 H Alpha draw source:  0=DDA; 1=HOSTRW register.
8 STOPONX R/W 0x0 H Specifies execution tests for X coordinate endpoint reached.
9 STOPONY R/W 0x0 H Specifies execution tests for Y coordinate endpoint reached.

10 SKIPFIRST R/W 0x0 H Disable start-point draw (lines only).
11 SKIPLAST R/W 0x0 H Disable endpoint draw, freeze iterators at endpoint (lines only).
12 ENZPATTERN R/W 0x0 H Patterning enable.
13 ENLSPATTERN R/W 0x0 H Line stipple pattern enable.
14 LSADVLAST R/W 0x0 H Enables stipple advance at end of line.
15 LENGTH32 R/W 0x0 H Limits draw primitive to 32 pixels.
16 ZPOPAQUE R/W 0x0 H Enables opaque (vs. transparent) stipple mode for ZPATTERN.
17 LSOPAQUE R/W 0x0 H Enables opaque (vs. transparent) stipple mode for LSPATTERN.
18 SHADE R/W 0x0 H Enables linear shader R,G,B,A/CI DDAs.
19 LRONLY R/W 0x0 H Aborts primitive if initial XSTARTI > XENDI.
20 XYOFFSET R/W 0x0 H Add XYMOVE to XSTART,YSTART for draw relative operations.
21 CICLAMP R/W 0x0 H Enables CI shader DDA over/underflow clamping for CI pixels.
22 ENDPTFILTER R/W 0x0 H Enables hardware endpoint filtering (A_LINE only).
23 YSTRIDE R/W 0x0 H Enables Y axis  increment/decrement by 2

Table 8:   DRAWMODE0 register

Value Name Description
00 NOOP Do nothing.
01 READ Host read from framebuffer using ADRMODE.
10 DRAW Draw into framebuffer using ADRMODE.
11 SCR2SCR Framebuffer to framebuffer copy, (valid with ADRMODE=SPAN/BLOCK).

Table 9:   DRAWMODE0 OPCODE(1:0) definition.



SILICON GRAPHICS PROPRIETARY and CONFIDENTIAL

August 13, 1993  page24

Value Name Description
000 SPAN Span (or point) addressing mode.
001 BLOCK Block addressing mode, advance Y and restore XSTART at end of span.
010 I_LINE Bresenham line addressing mode, integer endpoints.
011 F_LINE Bresenham line addressing mode, fractional endpoints.
100 A_LINE Antialiased Bresenham line addressing mode .

Table 10:   DRAWMODE0 ADRMODE(2:0) definition.
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3.1.1.2 DRAWMODE1 Register

Bits Name Access Init Active Description
2:0 PLANES(2:0) R/W 0x1 Specifies which framebuffer planes enabled for R/W access:

000 none
001 R/W RGB/CI planes
010 R/W RGBA planes
100 R/W OLAY planes
101 R/W PUP planes
110 R/W CID planes

4:3 DRAWDEPTH(1:0) R/W 0x0 Drawn depth of  framebuffer PLANES, not including alpha:
00 Depth = 4 bits
01 Depth = 8 bits
10 Depth = 12 bits
11 Depth = 24 bits

5 DBLSRC R/W 0x0 Double-buffer mode pixel read source buffer, (0= buffer0).
6 YFLIP R/W 0x0 H Enable GL Y coord mapping:  0=origin at upper left; 1=origin at lower left.
7 RWPACKED R/W 0x0 H Enables pixel packing for HOSTRW access.

9:8 HOSTDEPTH(1:0) R/W 0x0 HOSTRW pixel packing/unpacking:
00 Pixel depth = 4 bits (1-2-1 BGR or 4 CI)
01 Pixel depth = 8 bits (3-3-2 BGR or 8 CI)
10 Pixel depth = 12 bits (4-4-4 BGR or 12 CI)
11 Pixel depth = 32 bits (8-8-8-8 ABGR)

10 RWDOUBLE R/W 0x0 H Enables double word (64-bit) host transfers (vs. 32-bit single word).
HOSTRW(0,1) format for host framebuffer DMA/PIO only.

11 SWAPENDIAN R/W 0x0 H OpenGL SWAP_ENDIAN pixel storage attribute.  When true, HOSTRW
short and long packed pixel data have their byte ordering swapped.

14:12 COMPARE(2:0) R/W 0x7 Color compare and AFUNCTION condition specifier, (conditions OR’ed).
     COMPARE(2) R/W H      Enable compare condition:  src > dest.
     COMPARE(1) R/W H      Enable compare condition:  src = dest.
     COMPARE(0) R/W H      Enable compare condition:  src < dest.

15 RGBMODE R/W 0x1 H Selects RGB (vs. CI) shade, round, dither,  compare,  and clamp modes.
16 DITHER R/W 0x0 H Enables dithering.
17 FASTCLEAR R/W 0x1 H Enables fast-clear write mode when CID checking disabled (CLIPMODE

CIDMATCH = 0xF).  Valid with DRAW SPAN/BLOCK only.
18 BLEND R/W 0x0 H Enable blendfunction.

21:19 SFACTOR(2:0) R/W 0x0 H Blendfunction source blending factor, (see Table 13).
24:22 DFACTOR(2:0) R/W 0x0 H Blendfunction destination blending factor, (see Table 14).

25 BACKBLEND R/W 0x0 H Enable COLORBACK to be used for blendfunction destination color.
26 PREFETCH R/W 0x0 H Enables host framebuffer pixel prefetch mechanism for PIO reads.
27 BLENDALPHA R/W 0x0 H Selects SFACTOR BF_SA source alpha:  ‘1’ = source alpha, ‘0’ = 1.0.

31:28 LOGICOP(3:0) R/W 0x3 Logical operation type, (see Table 12).

Table 11:   DRAWMODE1 register.
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Value Symbol Operation
0000 LO_ZERO 0
0001 LO_AND src AND dst
0010 LO_ANDR src AND (NOT dst)
0011 LO_SRC src
0100 LO_ANDI (NOT src) AND dst
0101 LO_DST dst
0110 LO_XOR src XOR dst
0111 LO_OR src OR dst
1000 LO_NOR NOT (src OR dst)
1001 LO_XNOR NOT (src XOR dst)
1010 LO_NDST NOT dst
1011 LO_ORR src OR (NOT dst)
1100 LO_NSRC NOT src
1101 LO_ORI (NOT src) OR dst
1110 LO_NAND NOT (src AND dst)
1111 LO_ONE 1

Table 12:   DRAWMODE1 LOGICOP(3:0) definition.

Value Symbol Source Blending Factor
000 BF_ZERO 0
001 BF_ONE 1
010 BF_DC normalized[destination color (or COLORBACK)]
011 BF_MDC 1 - normalized[destination color (or COLORBACK)]
100 BF_SA normalized[source alpha]
101 BF_MSA 1 - normalized[source alpha]

Table 13: DRAWMODE1 SFACTOR(2:0) definition.

Value Symbol Destination Blending Factor
000 BF_ZERO 0
001 BF_ONE 1
010 BF_SC normalized[source color]
011 BF_MSC 1 - normalized[source color]
100 BF_SA normalized[source alpha]
101 BF_MSA 1 - normalized[source alpha]

Table 14:   DRAWMODE1 DFACTOR(2:0) definition.
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3.1.1.3 LSMODE Register

3.1.1.4 CLIPMODE Register

3.1.1.5 STATUS Register/USER_STATUS Register

Bits Name Access Init Active Description
7:0 LSRCOUNT(7:0) R/W Current value of LSREPEAT down counter, (advance LS pattern when 0).

15:8 LSREPEAT(7:0) R/W Line stipple pattern (bit expansion) repeat factor, (1 ≤ LSREPEAT ≤ 255).
23:16 LSRCNTSAVE(7:0) R/W Copy of LSRCOUNT, (updated with write to LSSAVE register address).
27:24 LSLENGTH(3:0) R/W Length of LSPATTERN, from 17 to 32, starting with msb, (0000=17).

Table 15:   LSMODE register.

Bits Name Access Init Active Description
4:0 ENSMASK(4:0) R/W 0x0 H Individual enables for SMASK4:0.
8:5 <reserved> R/W 0x0

12:9 CIDMATCH(3:0)
     CIDMATCH(3)
     CIDMATCH(2)
     CIDMATCH(1)
     CIDMATCH(0)

R/W 0x0
H
H
H
H

CID codes to compare, results OR’ed:
     selects CID code 11 for CID check
     selects CID code 10 for CID check
     selects CID code 01 for CID check
     selects CID code 00 for CID check

Table 16:   CLIPMODE register.

Bits Name Access Init Active Description
2:0 VERSION(2:0) R Revision code, (001 = 1st revesion).
3 GFXBUSY R 0x0 H Indicates graphics pipeline not idle or GFIFO not empty.
4 BACKBUSY R 0x0 H Indicates backend pipeline not idle or BFIFO not empty.
5 VRINT R H Video controller vertical retrace interrupt.  VR_INT_N falling-edge

detected, generating VV_INT interrupt.  Cleared by the read of STATUS,
not cleared by the read of USER_STATUS.

6 VIDEOINT R H Video option interrupt VIDEO_INT_N status, generating VV_INT
interrupt.

12:7 GFIFOLEVEL(5:0) R 0x00 Current GIO graphics FIFO level, (0 = empty FIFO).
17:13 BFIFOLEVEL(4:0) R 0x00 Current display bus FIFO level, (0 = empty FIFO).

18 BFIFO_INT R 0x0 H BFIFOLEVEL above BFIFODEPTH interrupt was generated.  Cleared by
the read of STATUS, not cleared by the read of USER_STATUS.
Provides sticky status of BFIFO above FIFO_INT_N interrupts.

19 GFIFO_INT R 0x0 H GFIFOLEVEL above GFIFODEPTH interrupt was generated.  Cleared by
the read of STATUS, not cleared by the read of USER_STATUS.
Provides sticky status of GFIFO above FIFO_INT_N interrupts.

Table 17:   STATUS register.
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3.1.1.6 CONFIG Register

Bits Name Access Init Active Description
0 GIO32MODE R/W 0x0 H When set, the REX3 will assume that the information sent by the host

during the byte count cycle of a GIO bus transfer is in GIO32 bus format.
When cleared, GIO64 byte count cycles are assumed.  When GIO32
mode is selected, EXTREGXCVR should also be set, and BUSWIDTH
should be cleared.

1 BUSWIDTH R/W 0x0 Denotes the physical width of the GIO64 bus.  1=64 bits, 0=32 bits
2 EXTREGXCVR R/W 0x1 Denotes the presence of external registered transceivers separating the

pipelined from the non-pipelined GIO64 bus.
6:3 BFIFODEPTH(3:0) R/W 0x8 Display bus FIFO high/low trigger depth:  stalls GIO bus and enables GIO

timeout counter when  BFIFOLEVEL≥BFIFODEPTH and BFIFABOVEINT
is set.  Host FIFO interrupt is generated when BFIFOLEVEL becomes
less than BIFODEPTH and BFIFOABOVEINT is cleared.

7 BFIFOABOVEINT R/W 0x1 Display bus FIFO interrupt select.  When set, GIO bus stalls and GIO
timeout counter is enabled when BFIFOLEVEL≥³BFIFODEPTH.  When
cleared and BFIFOLEVEL becomes less than BIFODEPTH, a host FIFO
interrupt is generated.

12:8 GFIFODEPTH(4:0) R/W 0x10 GIO graphics FIFO high/low trigger depth:  stalls GIO bus and enables
GIO timeout counter when GFIFOLEVEL≥GFIFODEPTH and
GFIFOABOVEINT is set.  Host FIFO interrupt is generated when
GFIFOLEVEL becomes less than GIFODEPTH and GFIFOABOVEINT is
cleared.

13 GFIFOABOVEINT R/W 0x1 GFIFO interrupt select.  When set, GIO bus stalls and GIO timeout
counter is enabled when GFIFOLEVEL≥³³GFIFODEPTH.  When cleared
and GFIFOLEVEL becomes less than GIFODEPTH, a host FIFO interrupt
is generated.

16:14 TIMEOUT(2:0) R/W 0x0 GIO bus timeout interval:  000=0.96µsec, 001=1.44µsec... 111=4.32µsec.
Timeout generates host FIFOFULL interrupt and unstalls GIO bus.

19:17 VREFRESH(2:0) R/W 0x1 Number of VRAM refresh cycles per transfer cycle, 000=refresh disabled.
20 FB_TYPE R/W H Framebuffer fastclear column mask mode select:

0 TI mode:  replicate 4-bit comumn mask
1 non-TI mode:  zero-fill comumn mask 4 msbs

Table 18:   CONFIG register.
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3.1.1.7 DCBMODE Register

Bits Name Access Init Active Description
1:0 DATAWIDTH(1:0) R/W 0x0 Width of the data being transferred for each DCBDATA0 or DCBDATA1

word.  Needed to support the OpenGL SWAP_ENDIAN construct, and to
allow RGB triplets to be packed into words.

00 4 bytes
01 1 byte
10 2 bytes
11 3 bytes

2 ENDATAPACK R/W 0x0 H Determines the use of the DATAWIDTH field for packed/unpacked data.
When set, all bytes addressed by DCBDATA will be transferred.  When
clear, only DATAWIDTH bytes in each addressed DCBDATA word will be
transferred

3 ENCRSINC R/W 0x0 H Enables DCB_CRS(2:0) auto-increment following each DCB transfer.
6:4 DCBCRS(2:0) R/W 0x0 Display bus control register select address.

10:7 DCBADDR(3:0) R/W 0xF Display bus slave address.
11 ENSYNCACK R/W 0x0 H Enables display control bus protocol with synchronous acknowledge of

data transfer with DCB_ACK_N
12 ENASYNCACK R/W 0x0 H Enables display control bus protocol with asynchronous acknowledge of

data transfer (four-edge handshake protocol with DCB_CS_N and
DCB_ACK_N).

17:13 CSWIDTH(4:0) R/W 0x0 # GIO_CLK cycles width for DCB_CS_N.
22:18 CSHOLD(4:0) R/W 0x0 # GIO_CLK cycles hold time before DCB_CS_N de-asserted.
27:23 CSSETUP(4:0) R/W 0x0 # GIO_CLK cycles setup before DCB_CS_N asserted.

28 SWAPENDIAN R/W 0x0 H OpenGL SWAP_ENDIAN pixel storage attribute.  When true, DCBDATA
short and long packed pixel data have their byte ordering swapped.

Table 19:   DCBMODE register.
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3.2 Coordinate System

There are several ways to describe the coordinate system in REX3.  First, its framebuffer contains a region
of 1280 x 1K pixels which can be displayed on a monitor.  To the right of this area is an “off-screen” or non-
displayed section of memory which is 64 pixels wide, adjacent to the right edge of displayable memory.

The physical coordinates for this displayable space are:  4K,4K for the upper left corner, and 4K+1279, 5K-
1 for the lower right corner.  The lower right corner becomes 5K+63 including the off-screen memory space.

The X11 window system normally considers the upper left region of displayable memory as being at 0,0;  in
order to achieve this with REX3, the window relative bias register XYWIN is loaded with a 4K,4K offset val-
ue.  This allows the X11 coordinate system to be used directly with REX3, which supports the full 16b,16b
addressability (-32K through +32k-1 along each axis), without the need for  host clipping.

The GL implementation running on REX3 relies on float-to-fixed point coordinate transformation shortcuts
which result in biased coordinates;  this bias is hardwired within REX3 to a value of 4K,4K.   Assuming that
the  GL makes use of exactly this bias value, applicatons which rely on transformed coordinates do not need
to load XYWIN with the 4K,4K bias;  instead, the XYWIN register is used for window-relative offset, from the
displayed screen origin to the origin of the GL window of interest:  xrel, yrel.  If the GL uses a bias differing
from 4K  then XYWIN must be explicitly biased by the value (GL bias minus 4K) so as to yield values of:
(xrel + GL bias - 4K), (yrel + GL bias -4K).

The GL relies on a subset of the X11 address space, limited to 8K x 8K (0 thru 8K-1 along each axis, where
our origin is centered at  or about 4K,4K, depending on the bias mentioned above) .  When the Y axis is
increasing in downward direction (X11 system, which some GL code has been modified to conform to), the
DRAWMODE1 bit YFLIP is set to zero, and all window and screen origins are referenced to the upper left
of respective area rectangles.  When the Y axis increases upward (the usual GL convention) the DRAW-
MODE1 bit YFLIP is set to one;  now all window and screen origins are referenced to the lower left of re-
specitve area rectangles.  In this case, XYWIN must be set to (0+xrel, 9K-1-yrel), where xrel,yrel are signed
distance from screen origin to window origin (all lower left here), assuming 4K,4K biasing of the X,YSTART
and X,YEND  coordinate values.  This becomes a little more complex if biasing differs:  (xrel + GL bias - 4K),
(5K + GL bias -1 - yrel).

Subpixel positioning of XSTART, YSTART, XEND, YEND of 4 bits are supported for line drawing, including
antialiasing and endpoint filtering.

An arbitrary signed offset may be applied to XSTART, YSTART via setting DRAWMODE0 bit XYOFFSET.
The signed value in XYMOVE is then applied.  (Note:  XYOFFSET should never be set for screen-to-screen
copy mode, which uses XYMOVE for its own offset between source and destination.)

3.3 Clipping and Masking

Framebuffer values are conditionally written as a function of sector clipping, screen masking, CID masking,
afunction, and color compare.  (Transparent patterning also conditions the writes, see 3.8.1, Patterning and
Stippling.)  Bits within each write are masked by the 24b WRITEMASK register (in this case, ‘0’ means don’t
write).

Sector clipping is performed internally by REX3 so as to cull any writes which are outside the legal drawing
area, defined by VRAM space. This space is described in Section 3.2, Coordinate System. Note that reads
are not culled, so as to maintain simplified read behavior for DMA and host reads.

Screen masking is performed via the 5 sets of rectangles described by the SMASK registers. These are
controlled by the CLIPMODE register, to define invocation of each mask.  All screenmasks are selectively
invoked by the ENSMASK field, and determine whether a given pixel is outside its area.  SMASK0 is a GL
mask, which clips drawing outside its region; it is window-relative (affected by XYWIN YFLIP) and conforms
to GL coordinate behavior (ust be biased in the same way as X and Y coordinates: see previous chapter).
Locations outside are masked. SMASKS1-4 are X11 general-purpose masks, not window-relative;  coordi-
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nates are absolute, and unaffected by XYWIN or YFLIP, requiring the host to prebias them with the 4K,4K
offset.

Overall, a screenmasked pixel may be written iff it is:

{(inside any of enabled screenmasks1-4) or (all screenmasks 1-4  disabled)} AND { inside screenmask0 or
screenmask0 disabled}.

Reads are never screenmasked.

CID masking is invoked on writes to framebuffer whenever CLIPMODE register bits CIDMATCH are not
‘1111’. In that case, CID location corresponding to each framebuffer address is read and compared with CI-
DMATCH field. If there is a match, the framebuffer write is permitted. CID checking is never performed on
framebuffer reads.

Afunction, or alpha function, is a GL feature which allows the user to inhibit framebuffer writes for specified
compare relationship between source alpha (either from DDA or host, for  bit ALPHAHOST=0,1 respective-
ly) and a specified reference alpha stored in register ALPHAREF.  The compare operator is given in the
DRAWMODE1 register COMPARE field.

Color compare is a peculiar feature of old GL releases for aiding in antialiased color index line drawing. For
RGBMODE=0, linedraw antialiased with DRAWMODE1 bits COMPARE not ‘111’ will conditionally write
based on source value, destination value comparison.

Writemasking is specified for 24b field and must match the bit positioning as described in Section 3.9,
Framebuffer Formats (exception:  writes to AUX planes only use lower 12b of the WRITEMASK).  The
WRITEMASK register is also used to specify double buffering, see Section 3.7, Double Buffering, for more
details.

3.4 Iterator Overview

There are four types of hardware iterators in REX3:  D,S1,S2;  R,G,B,A/X;  LSPATTERN,ZPATTERN;  X,Y.
First, the D term Bresenham error stepping iterator for controlling advance of X,Y major axis for Bresenham
linedraw. Additional iterators are provided for antialiased linedraw, to control  pixel coverage:  S1 calculates
the coverage value, in conjunction with S2 which determines  secondary pixel direction along the minor axis.
Second, DDA iterators for CI and R,G,B,A values for all planes. Third, recirculating iterators for line stipple
pattern (LSPATTERN) and polygon or Z mask pattern (ZPATTERN). Fourth, integer increment/decrement
iterators for X,Y of lines, spans and blocks.

The Bresenham stepper calculates one pixel address and coverage per clock. The Y iterator calculates one
value per clock (+/-1). The shader DDA calculates one or two pixel values per clock (+1,+2 times slope).
The pattern iterators calculate one, two, or four values per clock. The X iterator calculates one, two, four, or
32 values per clock (+/-1, +2, +/-4, +32).

Values per pipeline clock are determined as follows:  aliased linedrawing, one/clk; antialiasaed linedrawing,
two/3 clks;  shaded DDA spans/blocks, two/clk;  flat DDA spans/blocks, four/clk; screen-to-screen block
copy, per read or write:  four/clk; fast clear spans/blocks, 32/clk;  host/DMA reads, one to four/clk, and writes,
one or two/clk, depending on packed number of values per bus transfer specified in DRAWMODE1. For
more information on these modes, see Section 3.5, Framebuffer Access Modes.

Each of these iterators can be loaded with new starting values at the start of each primitive;  they compute
successive values within that primitive, for multiple-pixel primitives. Normally each iterator will retain, after
primitive completion, the state corresponding with the point after that last drawn. (H/W Note:  for back-to-
back primitives, the completion of the first overlaps with the start of the next, so that the iterator is never
loaded with the final state of first primitive, should the following primitive load the same iterator.)

Special mode bits are provided so that connected lines, which cover vertex of intersection twice (once per
iterated line), don’t cause problems. For GL, stippled, connected lines would normally advance line stipple
twice at intersection;  to prevent this, DRAWMODE0 bit LSADVLAST is set to zero, to inhibit LSPATTERN
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advance at end of primitive. The pixel of intersection is, however, drawn twice. This is not desired for X11,
where lines could be drawn with LOGICOP=xor:  then drawing same location twice gives different value than
drawing once! To handle this, bit SKIPLAST is set to inhibit drawing of endpoint of a line, and retain X,Y
state of the endpoint. This has the additional advantage of eliminating the need to reset the X,Y starting val-
ues for successive connected lines (e.g., for integer endpoint case). A SKIPFIRST bit is provided to skip
first pixel of antialiased line, should host prefer to do the endpoint filtering itself.  When this bit is set, the X,Y
iterators again retain the state of the endpoint.  Note:  “first” pixel is the first pixel per “GO” event;  “last” pixel
is (are) that corresponding to  the major axis end value.

3.5 Framebuffer Access Modes

The framebuffer may be accessed as points, lines, spans, or blocks of data. Additionally, REX3 provides
autoincrementing address features so that a line may be accessed as successive points (or patterned seg-
ments, for writes); a span as successive points or segments; and a block as successive points, segments,
or spans. Here the term “segment” is loosely used to refer to a fixed length string of pixels, usually a subset
of the primitive (line, span, or block row) being iterated.  In the following subsections, “Segments I” refers to
packed host data, using the HOSTRW registers with COLORHOST or ALPHAHOST set;  “Segments II” re-
fers to remaining cases which have DRAWMODE0 bit LENGTH32 set.

3.5.1 Lines:  Overview

Line mode is indicated by DRAWMODE0 register field ADRMODE=I_LINE, F_LINE, A_LINE. The Bresen-
ham setup is performed by REX3. This may include subpixel and antialiasing coverage calculations. For
information on integer versus subpixel positioned cases, see Section 3.6, Linedrawing.

Line drawing is specified by DRAWMODE0 field OPCODE=draw;  reading a line by OPCODE=read.

The endpoint of each line is not drawn if SKIPLAST=1; in this case the X,Y start state remains at the end-
point;  the startpoint is not drawn if SKIPFIRST=1 (note:  SKIPFIRST is used at start of each primitive, so it
should be cleared for second and later segments or points for case of primitive decomposed as such).

3.5.1.1 Line Draw or Host Read:  Points

A line can be read or written as sequential points by setting STOPONX=STOPONY=0. The state of
XSTART, YSTART is post-iterated each access, in accordance with the Bresenham algorithm.

Prior to the first point, the host must write to address=SETUP to have REX calculate octant and Bresenham
terms.

3.5.1.2 Line Draw:  Segments II

Here 32 pixels are drawn per primitive, until end condition reached. This is useful when patterning (LSPAT-
TERN, ZPATTERN) using the 32b pattern/stipple/z masking registers.

Prior to drawing the first segment, a write to address=SETUP is required, to perform octant and error term
initialization.

XS XE YS YE StoponX StoponY Dosetup Length32

XS XE YS YE 0 0 0 0
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3.5.1.3      Line Draw:  Full Line

This primitive draws a line as one command.

.

3.5.2 Point Draw or Read

A point is described by a XSTART, YSTART pair. This may be packed into a single word as a pair of integer
values (XYSTARTI), or as two words.

Whether reading or writing points, the DRAWMODE0 register is initialized with ADRMODE=block, DOSET-
UP=0.

 A point is written using OPCODE=draw. A collection of points as X,Y pairs per transfer may be written as
a DMA to rapidly construct an arbitrary, monochrome shape, such as a circle.  The DRAWMODE0 bit XY-
OFFSET may be used to add XYMOVE to these X,Y values.  A point is read using OPCODE=read.

3.5.3 Spans: Overview

Unlike points, spans require an X endpoint;  DRAWMODE field ADRMODE=span is set for spans, indicating
that X stepping direction is to be implied by sign of {XEND minus XSTART}. Currently there are not plans to
support Right-to-Left spans.

Spans may be culled by use of the DRAWMODE0 LRONLY bit:  it aborts span primitives where {XEND <
XSTART}, allowing Left-to-Right Only to draw.Spans are drawn using OPCODE=draw;  they are read using
OPCODE=read.

User beware:  the graphics state at the end of span iteration is determined by granularity of X coordinate
stepping.

3.5.3.1 Span Draw or Host Read:  Segments I

This span drawing mode uses pixel values from host or DMA obtained through the HOSTRW registers. De-
pending on the packing format, this could be one to sixteen pixels per 64b word, or to eight per 32b word.
DRAWMODE0 bit COLORHOST (ALPHAHOST) = 1 to indicate pixel source is not DDA.

This mode is also used for host reads of a span.

The host must, in advance, issue a write to address=SETUP in order to have REX calculate quadrant.

XS XE YS YE StoponX StoponY Dosetup Length32

XS XE YS YE 1 1 0 1

XS XE YS YE StoponX StoponY Dosetup Length32

XS XE YS YE 1 1 1 0

XS XE YS YE StoponX StoponY Dosetup Length32

XS -- YS -- 0 0 0 0
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3.5.3.2 Span Draw:  Segments II

This span drawing mode unlike the above, uses the DDA to calculate pixel value. It stops after 32 pixels
have been iterated, or the X endpoint is reached, whichever comes first. This is useful when using the LS-
PATTERN or ZPATTERN features, for non-repeating pattern values, such as Z buffering or arbitrary X11 pat-
terning. For spans of less than 33 pixels in length, the Full Span mode may be used instead.

The host must, in advance, issue a write to address=SETUP in order to have REX calculate quadrant.

3.5.3.3 Span Draw or DMA Read:  Full Span

This span mode draws a span as a single primitive.

A monochrome shape which is decomposed into a list of spans can be written using 64b writes as XYEN-
DI#XYSTARTI. Shape would be redrawn at various locations via use of DRAWMODE0 bit XYOFFSET and
XYMOVE.

This mode is used for DMA framebuffer reads of a span.

3.5.4 Blocks:  Overview

Block mode is specified by DRAWMODE0 field OPCODE=block. Drawing is performed on a span-by-span
basis. At the end of each span, the XY DDA steps the YSTART value and resets the XSTART value to that
from XSAVE;  XSAVE is written whenever XSTART is updated by host. In addition to the coordinates needed
for a span, the block mode also requires the YEND value. Stepping in the Y direction is implied by sign of
{YEND minus YSTART}. As mentioned before, there is not support for Right-to-Left spans.

Block draw is performed with OPCODE=draw;  reads via OPCODE=read.

Polygon filling may use block draw mode to automatically step Y per span;  host then sets XSTART, XEND
per span.  YEND is set initially to an extreme so as to simply imply the direction of Y axis stepping per row.
STOPONY=0 for this mode, which means the first three block draw cases below can support this.

3.5.4.1 Block Draw or Host Read:  Segments I

Block draw in segments from host/memory is done as a sequence of span segment writes;  a segment which
exceeds the block width is truncated so that a segment is never covering two block rows (spans).  Host must
set COLORHOST or ALPHAHOST =1 for this mode.  See Span Draw, Segments I for more information.

XS XE YS YE StoponX StoponY Dosetup Length32

XS XE YS -- 0 0 0 0

XS XE YS YE StoponX StoponY Dosetup Length32

XS XE YS -- 1 0 0 1

XS XE YS YE StoponX StoponY Dosetup Length32

XS XE YS -- 1 0 1 0
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This mode is also used for host reads of framebuffer block.

The host must, in advance, issue a write to address=SETUP in order to have REX calculate quadrant.

3.5.4.2 Block Draw:  Segments II

Each primitive draws 32 pixels, maximum. Used in conjunction with LSPATTERN, ZPATTERN. The block
mode makes this useful for large character or other bit expansion drawing. Again, a primitive (segment) is
truncated at the end of each row, and never applied to two rows. See Span Draw, Segments II for more
information.

The host must, in advance, issue a write to address=SETUP in order to have REX calculate quadrant.

3.5.4.3 Block Draw or Stride DMA Read:  Spans

The block is drawn as a span per primitive, with the XY DDA performing post-increment of Y and reset of
X. Useful for characters of < 33 pixels width, using bit expansion of LSPATTERN, ZPATTERN.

Stride DMA reads use this mode.

The host must, in advance, issue a write to address=SETUP in order to have REX calculate quadrant.

3.5.4.4 Block Draw or Linear DMA Read:  Full Block

Draws an upright rectangular region as a single primitive.

Linear DMA read uses this mode for full block.

3.5.5 Fast Clear

This drawing mode provides 4x rate, for fast area clear. No support for any per pixel operations, such as
shade, stipple, dither, blend. Flat fill only, via value previously written by host into the COLORVRAM register.
The loading of COLORVRAM must be performed after DRAWMODE1 fields RGBMODE and DRAWDEPTH
have been set.  In addition to the bits shown below, the DRAWMODE1 bit FASTCLEAR must be set. DRAW-

XS XE YS YE StoponX StoponY Dosetup Length32

XS XE YS YE 0 0 0 0

XS XE YS YE StoponX StoponY Dosetup Length32

XS XE YS YE 1 0 0 1

XS XE YS YE StoponX StoponY Dosetup Length32

XS XE YS YE 1 0 0 0

XS XE YS YE StoponX StoponY Dosetup Length32

XS XE YS YE 1 1 1 0
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MODE0 register OPCODE=draw, ADRMODE=block or span must be used. CID checking is not allowed for
this drawing mode. Spans must be Left to Right.

3.5.6 Screen-to-Screen Move

Screen-to-screen copy is specified by DRAWMODE0 field OPCODE=Scr2Scr and ADRMODE=block or
span. The command setup is similar to the Full Block or Full Span draw, with the addition of a signed offset
to destination (**unlike REX1, which was offset to source**)  specified by XYMOVE. This offset is with re-
spect to the window origin, and is therefore interpreted with respect to YFLIP. Block move supports Right-
to-Left spans. The host must order the X,Y start/end points (hence, quadrant) such that the copy does not
destroy itself in the process, for source area overlapping destination. Using this mode with XYMOVE=0 will
be slower than its obvious optimization.  DRAWMODE0 bit XYOFFSET should be 0.

XS XE YS YE StoponX StoponY Dosetup Length32

XS XE YS YE 1 1 1 0

XS XE YS YE StoponX StoponY Dosetup Length32

XS XE YS YE 1 1 1 0
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3.6    Line Draw Instructions

3.6.1  Bresenham Aliased Line Draw Instructions

Newport is the first system that uses exclusively Bresenham algorithms as opposed to DDA.  The main rea-
son is that  Bresenham is has infinite precision whereas DDA cannot guarantee predictability at any number
of bits of fraction.The second  reason is that aliased lines have a much shorter setup since there is no divi-
sion for slope computation. The third  reason is that by using Bresenham we can unify the hardware and
the algorithms for drawing both aliased and antialiased lines and polygons. The BRESROUND field of the
DRAWMODE0 register decides how the comparison between d and 0 should be executed:

If BRESROUND=1 Then    // BRESROUND has 8 bits-one for each octant//

     If  d < 0 Then            // this branch is executed for d < 0 //

     Begin

       ...........

    End Else                      // this branch is executed for d >= 0 //

If BRESROUND=0 Then

     If  d =< 0 Then            // this branch is executed for d =< 0 //

     Begin

       ...........

    End Else                      // this branch is executed for d > 0 //

By appropriate programming of the BRESROUND bits we can produce hysteresis-free lines.

3.6.1.1 I_line(x1,y1,x2,y2,SKIPLAST,SKIPFIRST)

    integer: x1,y1,x2,y2

This is an aliased line with integer endpoints The intent is to have maximum performance at the expense of
line quality. Bresenham algorithm allows for very short setup (no multiplication/division) and for reproduc-
ibility of results (always touches the same pixels). REX3 computes the octant.

The performance is limited by :

-the time for  passing the arguments from the CPU to REX3 over GIO bus

-the time for generating the setup values by REX3 : d=2dy-dx, etc (5 clocks)

-time for iterating a new coordinate (1 clock)

Since the coordinates are integer there are no precision requirements - Bresenham algorithm with integer
endpoints is infinitely precise. If SKIPFIRST=TRUE the starting point (x1,y1) is not drawn by REX3.
If SKIPLAST=TRUE the endpoint (x2,y2) is not drawn by REX3.

            Register-level description:

XYSTARTI=x1,y1 //only the listed registers must be saved at context switch because :  //

XYENDI=x2,y2    //-all variables used by Bresenham are derived from the input variables//

DRAWMODE: OPCODE=I_line

             Context-switched registers:
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XSTART=x_current

YSTART=y_current

XEND=x2              // necessary for computing the pixel count //

YEND=y2              // necessary for computing the pixel count //

BRESD=d             // current d value //

BRESEOCTINC1=octant,incr1          // octant + incr1 for d //

BRESINC2=incr2            // incr2 for d //

3.6.1.2 F_Line(x1,y1,x2,y2,SKIPLAST,SKIPFIRST)

    fixed : x1,y1,x2,y2

This is an aliased line with fractional  endpoints The intent is to have maximum performance at the expense
of line quality. Bresenham algorithm allows for very short setup (two  multiplications and no division) and for
reproducibility of results (always touches the same pixels). REX3 or the CPU computes the octant . The
performance is limited by :

-the time for  passing the arguments from the CPU to REX3 over GIO bus

-the time for generating the setup values by REX3  : d=3dy-2dx+2(dx*y_fract-dy*x_fract) .All GL linedrawing
primitives must use 3dy-2dx due to the way GL views the coordinate system as opposed to X. (12 clocks)

-time for iterating a new coordinate (1 clock)

-time for drawing the fractional coverage  endpoints

A  serial multiplier is necessary for computing d..Since the multiplicand involved (x_frac,y_frac) has very few
bits a serial multiplier executes the required multiplication in few cycles. If SKIPFIRST=TRUE the starting
point (x1,y1) is not drawn by REX3. If SKIPLAST=TRUE the endpoint (x2,y2) is not drawn by REX3.

              Register-level description:

XSTART=x1  //fixed point number in 16.4 format//

YSTART=y1 //fixed point number in 16.4 format//

XEND=x2     //fixed point number//

YEND=y2     //fixed point number//

DRAWMODE: OPCODE=F_line

            Context-switched registers:

XSTART=x_current

YSTART=y_current

XEND=x2

YEND=y2

BRESD=d

BRESOCTINC1=octant,incr1

BRESINC2=incr2
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3.6.2 Bresenham Antialiased  Line Draw Instructions

3.6.2.1 A_Line(x1,y1,x2,y2,e1,aa_table,SKIPFIRST,SKIPLAST)

   fixed : x1,y1,x2,y2,e1

   array : aa_table      // angle-compensated table of pixel coverages indexed by s //

THIS PRIMITIVE WILL ALSO BE USED FOR GENERATING ANTIALIASING EDGES BY MASKING OUT
THE TOP OR BOTTOM HALF WITH THE HELP OF THE ZPATTERN (BOTTOM HALF)), LSPATTERN
(TOP HALF)  REGISTERS.
This is an anti-aliased line with fractional  endpoints and with angle compensation but without any endpoint
filtering.It has INFINITE precision in terms of pixel positioning (exactly like I_LINE) since it doesn’t rely on a
DDA algorithm in terms of position determination. The intent  is to generate high quality lines at 80-90% the
speed of aliased blended  lines. The width of the line is restricted to 1 - for wider lines (and for polygons) the
Bresenham antialiasing edge (see 3.6.2.3) should be used. Two pixels (in the minor axis direction)  are in-
terpolated at each major axis iteration . This approach allows for  line intensity independent of line angle
(i.e. independent of pixel density).  The performance is limited by :

-the time required for the CPU to compute the slope e1 and to find the aa_table (which is a function of e1)
in memory

-the time for  passing the arguments from the CPU to REX3 over GIO bus

-the time for generating the setup  : d=3dy-2dx+2(dx*y_fract-dy*x_fract) ,s=y_fract+e1*(.5-x_fract)-.5

  s*dx=s*2dx=dy-dx+2(dx*y_fract-dy*x_fract)

-REX3 time for iterating two  new coordinates (closely related to each other) (3 clocks/pair)

A serial multiplier is necessary for computing d and s.If SKIPLAST=TRUE the endpoint (x2,y2) is not drawn
by  REX3. If SKIPFIRST=TRUE the first point (x1,y1) is not drawn by REX3. The algorithm draws two pixels
(T  and  S) at each iteration.The coverages for these two pixels are derived by indexing into the AWEIGHT
table with a function of s as described below.The AWEIGHT table needs to be reloaded for every change in
the line slope e1. Note that here s_frac represents the absolute value of the fractional part of s.

If 0=<s=<1 Then

Begin

  coverage_T=f(s)=f(s_frac)    // s_frac=Fraction(s)//

  coverage_S=f(1-s)=f(1-s_frac)=f(~s_frac)    //~s_frac=1.0-s_frac //

End

If -1=<s<0 Then

Begin

  coverage_T=f(1+s)=f(~s_frac)

  coverage_S=f(-s)=f(s_frac)

End

The case for d>0 that includes the subcases 0<s<1 and 1<s<2 reduces to the above case if we manage to
arrange for -1<s<1.This is done by adding e2=e1-1 prior to rendering the pixels.As it can be seen the
AWEIGHT table is indexed with s_frac and ~s_frac (one’s complement of the fractional portion of s).

              Register-level description:
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XSTART=x1     //fixed point number//

YSTART=y1

XEND=x2

YEND=y2

aa_table=AWEIGHT0,1=function(s,e1)     // this table is calculated for each slope and is indexed by s //

DRAWMODE: OPCODE=A_line

                        BLEND=enabled

                        SFACTOR=BF_SA   // SFACTOR=alpha//

                        DFACTOR=BF_MSA   // DFACTOR=1-alpha//

              Context-switched registers:

XSTART=x_current

YSTART=y_current

XEND=x2

YEND=y2

BRESE1=e1

BRESD=d

BRESS1=s

BRESS2=sdx        //sdx=s*dx must be context switched//

BRESOCTINC1=octant,incr1

BRESINC2=incr2

AWEIGHT0,AWEIGHT1=aa_table

3.6.2.2 A_Edge_Top(x1,y1,x2,y2,e1,aa_table,SKIPFIRST,SKIPLAST,ENDPTFILTER)

   fixed : x1,y1,x2,y2,e1

   array : aa_table

THIS PRIMITIVE IS REMOVED FROM REX3 INSTRUCTION SET. THE REASON FOR NOT REMOVING
IT FROMTHE SPEC IS TO ALLOW GL CODERS TO UNDERSTAND WHAT IS THAT THEY NEED TO DO
IN ORDER TO COMPUTE THE MASKS (ZPATTERN, LSPATTERN) USED FOR 3D ANTIALIASED LINES.
This is an anti-aliasing polygon edge  with fractional  endpoints.It differs from the antialiased Bresenham
line because only one pixel is drawn at each iteration (the pixel external to the polygon).For clockwise poly-
gons A_Edge_Top  is invoked by the CPU for edges located in octants 1,3,5,7(for even octants the CPU
must invoke A_Edge_Bottom).The reason for this is that in octants 1,3,5,7 it is the top pixel that lies outside
the polygon whereas in octants 2,4,6,8 it is the bottom pixel that lies on the outside.For counterclockwise
polygons the convention is reversed: CPU must invoke A_Edge_Top for edges in octants 2,4,6,8 and
A_edge_Bottom in octants 1,3,5,7.The overhead for computing the octant is nill since the CPU must do it
anyways in order to calculate the z-mask.It has INFINITE precision in terms of pixel positioning (exactly like
I_LINE) since it doesn’t rely on a DDA algorithm in terms of position determination.Since GL has a very pre-
cise notion of T-mesh edge it is possible to use this primitive to antialias only the contour of the mesh without
touching the inner edges.Only the pixels above the infinitely precise line are being rendered (“above” is
viewed as looking down the axis of maximum motion).The AWEIGHT table needs to be reloaded for every
change in the line slope e1.Two types of antialiasing edges (top and bottom) have been invented in order
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to facilitate polygon antialiasing.If a top and bottom edges are drawn between the same pair of points (x1,y1)
and (x2,y2) an antialiased line will result. The performance is limited by :

-the time required for the CPU to compute the slope e1

-the time for  passing the arguments from the CPU to REX3 over GIO bus

-the time for generating the setup : d=3dy-2dx+2(dx*y_fract-dy*x_fract) , s=y_fract+e1*(.5-x_fract)-.5

  s*dx=s*2dx=dy-dx+2(dx*y_fract-dy*x_fract)

-REX3 time for iterating one  new coordinate

-REX3 time for drawing the fractional coverage  endpoints

The endpoints may not be drawn in order to simplify the implementation and in order to generate the im-
pression of sharp vertices.

                 Register-level description:

XSTART=x1      //fixed point number//

YSTART=y1

XEND=x2

YEND=y2

AWEIGHT0,AWEIGHT1=aa_table(s)

DRAWMODE: OPCODE=AA_Edge_Top

                Context-switched registers:

XSTART=x_current

YSTART=y_current

XEND=x2

YEND=y2

BRESE1=e1

BRESD=d

BRESS1=s

BRESS2=sdx

BRESOCTINC1=octant,incr1

BRESINC2=incr2

AWEIGHT0,AWEIGHT1=aa_table

3.6.2.3 A_Edge_Bottom(x1,y1,x2,y2,e1,aa_table,SKIPFIRST,SKIPLAST,ENDPTFILTER)

   fixed : x1,y1,x2,y2,e1

   array : aa_table

THIS PRIMITIVE IS REMOVED FROM REX3 INSTRUCTION SET. THE REASON FOR NOT REMOVING
IT FROMTHE SPEC IS TO ALLOW GL CODERS TO UNDERSTAND WHAT IS THAT THEY NEED TO DO
IN ORDER TO COMPUTE THE MASKS (ZPATTERN, LSPATTERN) USED FOR 3D ANTIALIASED LINES.
This is an anti-aliasing polygon edge  with fractional  endpoints.It differs from the antialiased Bresenham
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line because only one pixel is drawn at each iteration (the pixel external to the polygon).It has INFINITE pre-
cision in terms of pixel positioning (exactly like I_LINE) since it doesn’t rely on a DDA algorithm in terms of
position determination.Since GL has a very precise notion of T-mesh edge it is possible to use this primitive
to antialias only the contour of the mesh without touching the inner edges.Only the pixels below the infinitely
precise line are being rendered (“below” is viewed as looking down the axis of maximum motion).

The performance is limited by :

-the time required for the CPU to compute the slope e1

-the time for  passing the arguments from the CPU to REX3 over GIO bus

-the time for generating the setup : d=3dy-2dx+2(dx*y_fract-dy*x_fract) , s=y_fract+e1*(.5-x_fract)-.5,
s*dx=s*2dx=dy-dx+2(dx*y_fract-dy*x_fract)

-REX3 time for iterating one  new coordinate

-REX3 time for drawing the fractional coverage  endpoints

The endpoints may not be drawn in order to simplify the implementation and in order to generate the im-
pression of sharp vertices.

                 Register-level description:

XSTART=x1      //fixed point number//

YSTART=y1

XEND=x2

YEND=y2

AWEIGHT0,AWEIGHT1=aa_table(s)

DRAWMODE: OPCODE=AA_Edge_Bottom

                Context-switched registers:

XSTART=x_current

YSTART=y_current

XEND=x2

YEND=y2

BRESE1=e1

BRESD=d

BRESS1=s

BRESS2=sdx

BRESOCTINC1=octant,incr1

BRESINC2=incr2

AWEIGHT0,AWEIGHT1=aa_table
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Code for X- line with integer endpoints

Procedure X_line(x1,y1,x2,y2,SKIPLAST,SKIPFIRST)

integer: x1,y1,x2,y2

Begin

//Compute the octant-independent values//

   x=x1, y=y1

    dx=ABS(x1-x2), dy=ABS(y1-y2)

   Coverage=1

If SKIPFIRST=FALSE Then Write_Pixel(x,y,Coverage)    //Starting pixel has coverage=1//

Case Octant of (x2-x1,y2-y1,dx-dy) :

1:    d=2dy-dx , incr1=2dy , incr2=2(dy-dx), Loop=dx  //compute the octant-dependent values//

        incrx1=1,incrx2=1,incry1=0,incry2=1

2:    d=2dx-dy , incr1=2dx , incr2=2(dx-dy), Loop=dy  //compute the octant-dependent values//

        incrx1=0,incrx2=1,incry1=1,incry2=1

3:    d=2dx-dy , incr1=2dx , incr2=2(dx-dy), Loop=dy  //compute the octant-dependent values//

        incrx1=0,incrx2=-1,incry1=1,incry2=1

4:    d=2dy-dx , incr1=2dy , incr2=2(dy-dx), Loop=dx  //compute the octant-dependent values//

        incrx1=-1,incrx2=-1,incry1=0,incry2=1

5:    d=2dy-dx , incr1=2dy , incr2=2(dy-dx), Loop=dx  //compute the octant-dependent values//

        incrx1=-1,incrx2=-1,incry1=0,incry2=-1

6:    d=2dx-dy , incr1=2dx , incr2=2(dx-dy), Loop=dy  //compute the octant-dependent values//

        incrx1=0,incrx2=-1,incry1=-1,incry2=-1

7:    d=2dx-dy , incr1=2dx , incr2=2(dx-dy), Loop=dy  //compute the octant-dependent values//

        incrx1=0,incrx2=1,incry1=-1,incry2=-1

8:    d=2dy-2dx , incr1=2dy , incr2=2(dy-dx), Loop=dx  //compute the octant-dependent values//

        incrx1=1,incrx2=1,incry1=0,incry2=-1

For i=1 to Loop-1  Do

Begin

If d<0 Then  // s<t , execute a horizontal step//

  Begin

x=x+incrx1 //advance to next pixel//

    y=y+incry1

    d=d+incr1 //compute new values for d and s//

End Else//s>t>0, execute a 45 degree step//
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  Begin//45 degree move//

    x=x+incrx2

    y=y+incry2

    d=d+incr2

  End

  Write_Pixel(x,y,Coverage)

End

If  SKIPLAST=FALSE Then  Write_Pixel(x2,y2,Coverage)

End
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Code for aliased  line with fractional endpoints

Procedure GL_Bresenham(x1,y1,x2,y2,SKIPLAST,SKIPFIRST)

fixed : x1,y1,x2,y2 //x=x_int.x_fract where x_fract is 4  bits of precission//

fixed : dx,dy

integer: x10,y10,x20,y20,dx_i,dy_i

//Compute the octant-independent values//

x10=int(x1) , y10=int(y1)//REX3 computes the flixed->int and the d term//

x20=int(x2) , y20=int(y2)

x=x10, y=y10

dx=ABS(x1-x2), dy=ABS(y1-y2)

dx_i=ABS(x10-x20)-1, dy_i=ABS(y10-y20)-1

Case Octant  of (x2-x1,y2-y1,dx-dy) :

1:    d=3dy-2dx , incr1=2dy , incr2=2(dy-dx), Loop=dx_i  //compute the octant-dependent values//

        incrx1=1,incrx2=1,incry1=0,incry2=1

2:    d=3dx-2dy , incr1=2dx , incr2=2(dx-dy), Loop=dy_i  //compute the octant-dependent values//

        incrx1=0,incrx2=1,incry1=1,incry2=1

        temp=x1_fract             //swap x and y//

        x1_fract=y1_fract

        y1_fract=temp

        temp=dx

        dx=dy

        dy=temp

3:    d=3dx-2dy , incr1=2dx , incr2=2(dx-dy), Loop=dy_i  //compute the octant-dependent values//

        incrx1=0,incrx2=-1,incry1=1,incry2=1

        temp=1-x1_fract  //use 1-x_fract left of y-axis.//

        x1_fract=y1_fract

        y1_fract=temp

        temp=dx

        dx=dy

        dy=temp

4:    d=3dy-2dx , incr1=2dy , incr2=2(dy-dx), Loop=dx_i  //compute the octant-dependent values//

        incrx1=-1,incrx2=-1,incry1=0,incry2=1

        x1_fract=1-x1_fract//use 1-x_fract left of y-axis//

5:    d=3dy-2dx , incr1=2dy , incr2=2(dy-dx), Loop=dx_i  //compute the octant-dependent values//

        incrx1=-1,incrx2=-1,incry1=0,incry2=-1
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        x1_fract=1-x1_fract//use 1-x_fract left of y-axis//

        y1_fract=1-y1_fract//use 1-y_fract below  of x-axis//

6:    d=3dx-2dy , incr1=2dx , incr2=2(dx-dy), Loop=dy_i  //compute the octant-dependent values//

        incrx1=0,incrx2=-1,incry1=-1,incry2=-1

        temp=1-x1_fract

        x1_fract=1-y1_fract//use 1-y_fract below  of x-axis//

        y1_fract=temp

        temp=dx

        dx=dy

        dy=temp

7:    d=3dx-2dy , incr1=2dx , incr2=2(dx-dy), Loop=dy_i  //compute the octant-dependent values//

        incrx1=0,incrx2=1,incry1=-1,incry2=-1

        temp=1-y1_fract//use 1-y_fract below  of x-axis//

        y1_fract=x1_fract

        x1_fract=temp

        temp=dx

        dx=dy

        dy=temp

8:    d=3dy-2dx , incr1=2dy , incr2=2(dy-dx), Loop=dx_i  //compute the octant-dependent values//

        incrx1=1,incrx2=1,incry1=0,incry2=-1

        y1_fract=1-y1_fract//use 1-y_fract below  of x-axis//

d=d+2(dx*y1_fract-dy*x1_fract)                     //adjust d due to fractional endpoints//

E=d-2dx                                  //variable used for adjusting the start point up one pixel//

If E>0 Then

Begin

  d=E

  x=x+incrx2*~x_major

  y=y+incry2*x_major

End

Coverage=1                           // or we can use the CPU-calculated coverage //

//* This section has been removed on 11/5/92 as a result of a discussion with BobS

If SKIPFIRST=FALSE Then

Begin

      Write_Pixel(x,y,Coverage)    //Starting pixel has coverage=1, can be drawn conditionally//

End

For i=1 to Loop-1  Do
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Begin

  If d<0 Then  // s<t , execute a horizontal step//

  Begin

    x=x+incrx1 //advance to next pixel//

    y=y+incry1

    d=d+incr1 //compute new values for d and s//

  End Else//s>t>0, execute a 45 degree step//

  Begin//45 degree move//

    x=x+incrx2

    y=y+incry2

d=d+incr2

  End

Write_Pixel(x,y,Coverage)

End

If SKIPLAST=FALSE Then //Draw the last pixel conditionally//

Begin

  If d<0 Then  // s<t , execute a horizontal step//

  Begin

    x=x+incrx1 //advance to next pixel//

    y=y+incry1

    d=d+incr1 //compute new values for d and s//

  End Else//s>t>0, execute a 45 degree step//

  Begin//45 degree move//

    x=x+incrx2

    y=y+incry2

d=d+incr2

  End

Write_Pixel(x,y,Coverage)

End

End
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Code for antialiased  line with fractional endpoints and angle compensation, no endpoint filtering

Procedure Write_Pixel(x,y,alpha)             // 0=< alpha<=1  due to looking it up in aa_table //

global variable : new_color  //new_color is the current drawing color//

Begin

  Read_Framebuffer(x,y,bckg_color) //read the background color at location (x,y)//

       color=alpha*new_color + (1-alpha)*bckg_color// alpha represents pixel coverage//

       Write_Framebuffer(x,y,color) //write back the resultant of blending to location (x,y)//

  End

Procedure GL_AA_Bresenham(x1,y1,x2,y2,e1,c1)

fixed  : x1,y1,x2,y2,e1 //CPU computes the octant//

aray : aa_table0 (s,e1) ,aa_table1(1-s,e1)    // This array is a function of slope and is indexed with s_frac //

integer : Octant,x10,y10,x20,y20

integer : x_major//x_major=1 in octants 1,4,5,8 //

//e1=dy/dx for x-major .  e1=dx/dy for y-major where dx=ABS(x1-x2) and dy=ABS(y1-y2)//

//Compute the octant-independent values//

e2=e1-1.0

x10=int(x1) , y10=int(y1)//REX3 computes the fixed->int and the d term//

x20=int(x2) , y20=int(y2)

x=x10, y=y10

dx=ABS(x1-x2), dy=ABS(y1-y2)

dx_i=ABS(x10-x20)-1, dy_i=ABS(y10-y20)-1

Case Octant of (x2-x1,y2-y1,dx-dy) :

1:    d=3dy-2dx , incr1=2dy , incr2=2(dy-dx), Loop=dx_i  //compute the octant-dependent values//

        incrx1=1,incrx2=1,incry1=0,incry2=1 ,x_major=1

2:    d=3dx-2dy , incr1=2dx , incr2=2(dx-dy), Loop=dy_i //compute the octant-dependent values//

        incrx1=0,incrx2=1,incry1=1,incry2=1 ,x_major=0

        temp=x1_fract

        x1_fract=y1_fract

        y1_fract=temp

        temp=x2_fract

        x2_fract=y2_fract
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        y2_fract=temp

        temp=dx

        dx=dy

        dy=temp

3:    d=3dx-2dy , incr1=2dx , incr2=2(dx-dy), Loop=dy_i //compute the octant-dependent values//

        incrx1=0,incrx2=-1,incry1=1,incry2=1 ,x_major=1

        temp=1-x1_fract/use 1-x_fract left of y-axis//

        x1_fract=y1_fract

        y1_fract=temp

temp=1-x2_fract/use 1-x_fract left of y-axis//

        x2_fract=y2_fract

        y2_fract=temp

        temp=dx

        dx=dy

        dy=temp

4:    d=3dy-2dx , incr1=2dy , incr2=2(dy-dx), Loop=dx_i //compute the octant-dependent values//

        incrx1=-1,incrx2=-1,incry1=0,incry2=1 ,x_major=0

        x1_fract=1-x1_fract//use 1-x_fract left of y-axis//

x2_fract=1-x2_fract

5:    d=3dy-2dx , incr1=2dy , incr2=2(dy-dx), Loop=dx_i //compute the octant-dependent values//

        incrx1=-1,incrx2=-1,incry1=0,incry2=-1 ,x_major=1

        x1_fract=1-x1_fract//use 1-x_fract left of y-axis//

        y1_fract=1-y1_fract//use 1-y_fract below  of x-axis//

        x2_fract=1-x2_fract//use 1-x_fract left of y-axis//

        y2_fract=1-y2_fract//use 1-y_fract below  of x-axis//

6:    d=3dx-2dy , incr1=2dx , incr2=2(dx-dy), Loop=dy_i //compute the octant-dependent values//

        incrx1=0,incrx2=-1,incry1=-1,incry2=-1 ,x_major=0

        temp=1-x1_fract

        x1_fract=1-y1_fract//use 1-y_fract below  of x-axis//

        y1_fract=temp

        temp=1-x2_fract

        x2_fract=1-y2_fract//use 1-y_fract below  of x-axis//

        y2_fract=temp

        temp=dx

        dx=dy

        dy=temp
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7:    d=3dx-2dy , incr1=2dx , incr2=2(dx-dy), Loop=dy_i //compute the octant-dependent values//

        incrx1=0,incrx2=1,incry1=-1,incry2=-1 ,x_major=0

        temp=1-y1_fract//use 1-y_fract below  of x-axis//

        y1_fract=x1_fract

        x1_fract=temp

        temp=1-y2_fract//use 1-y_fract below  of x-axis//

        y2_fract=x2_fract

        x2_fract=temp

        temp=dx

        dx=dy

        dy=temp

8:    d=3dy-2dx , incr1=2dy , incr2=2(dy-dx), Loop=dx_i //compute the octant-dependent values//

        incrx1=1,incrx2=1,incry1=0,incry2=-1 ,x_major=1

        y1_fract=1-y1_fract//use 1-y_fract below  of x-axis//

        y2_fract=1-y2_fract

 s=y1_frac-0.5+e1(0.5-x1_frac)        //s for the first pixel//

 sdx=2[(y1_frac-0.5)dx+(0.5-x1_frac)dy]=dy-dx+2(dx*y1_fract-dy*x1_fract)

                                                                            // sdx=s*2dx is an infinitely precise number //

If s<0 Then      // The correct , positive s, is in this case s=y1_frac+0.5+e1(0.5-x1_frac)  = s+1 //

Begin

        s=s+1

        sdx=sdx+2*dx   //when s=s+1 sdx=sdx+2*dx //

End

d=d+2(dx*y1_fract-dy*x1_fract)    //adjust d due to fractional endpoints,this is d for second pixel//

        // s=y1_fract+e1*(1.5-x1_fract)-0.5 this would have been s for second pixel , s=s+e1 //

E=d-2dx

If E>0 Then

Begin

  d=E

End

If SKIPFIRST=TRUE Then

Begin

      If sdx>0 Then //Compute the coverage for the starting pixel//

        Begin      // THE BOLD CODE MAY BE  EXECUTED ON THE HOST IF SKIPFIRST=TRUE//
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// remember that for ymajor lines y1 and x1 have been swapped//

               Coverage_T=(y1_fr-1+c1/2)(1-0)+.5*e1(1-0)**2    //consider x1_fr=0//

                      Write_Pixel(x+incrx2*~x_major,y+incry2*x_major,Coverage_T)

                      Coverage_S=(1-0)*c1-Coverage_T   //S is below the line and has the larger coverage//

                      Write_Pixel(x,y,Coverage_S)

        End Else   //sdx<0//

        Begin

                       Coverage_T=(y1_fr+c1/2)(1-0)+.5*e1(1-0)**2//T has the  larger coverage//

                       Write_Pixel(x,y,Coverage_T)

                       Coverage_S=(1-0)*c1-Coverage_T     //S is below the line and has the larger coverage//

                       Write_Pixel(x-incrx2*~x_major,y-incry2*x_major,Coverage_S)

        End

End  Else

Begin

        If sdx>0 Then //Compute the coverage for the starting pixel//

        Begin      // THIS CODE  EXECUTED BY REX3 BECAUSE SKIPFIRST=FALSE//

       Coverage_T=aa_table(s_frac)    //T has the smaller coverage//

              Write_Pixel(x+incrx2*~x_major,y+incry2*x_major,Coverage_T)

              Coverage_S=aa_table(~s_frac)   //S is below the line and has the larger coverage//

              Write_Pixel(x,y,Coverage_S)

        End Else // sdx<0 //

        Begin

               Coverage_T=aa_table(~s_frac) //T has the  larger coverage//

               Write_Pixel(x,y,Coverage_T)

               Coverage_S=aa_table(s_frac)     //S is below the line and has the larger coverage//

               Write_Pixel(x-incrx2*~x_major,y-incry2*x_major,Coverage_S)

        End

End // SKIPFIRST //

For i=1 to Loop-1  Do

Begin

  If d<0 Then // s<t , execute a horizontal step//

  Begin

     x=x+incrx1 //advance to next pixel//

     y=y+incry1

     d=d+incr1 //compute new values for d and s//

     s=s+e1
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     sdx=sdx+2dy=sdx+incr1        // s*dx=s*dx+e1*dx   i.e   sdx=sdx+dy //

  End Else// d>0 results into s>t>0, execute a 45 degree step//

  Begin//45 degree move//

     x=x+incrx2

     y=y+incry2

   d=d+incr2 //compute new values for d and s//

     s=s+e2                // this brings s back into the interval [-1,1] //

     sdx=sdx+2(dy-dx)=sdx+incr2    //s*dx=s*dx+e2*dx=s*dx+(dy/dx-1)*dx=s*dx+dy-dx   i.e. sdx=sdx+dy-dx //

  End

   If sdx>0 Then

   Begin

         Coverage_T=aa_table(s_frac)         // s_frac=Fraction(s) //

          Write_Pixel(x+incrx2*~x_major,y+incry2*x_major,Coverage_T)

          Coverage_S=aa_table(~s_frac)      //~s_frac=0.f-s_frac //

          Write_Pixel(x,y,Coverage_S)

   End Else

   Begin

Coverage_T=aa_table(~s_frac)

          Write_Pixel(x,y,Coverage_T)

          Coverage_S=aa_table(s_frac)

          Write_Pixel(x-incrx2*~x_major,y-incry2*x_major,Coverage_S)

End

End

If  SKIPLAST=TRUE Then //THIS CODE MAY BE  EXECUTED ON THE HOSTIF SKIPLAST=TRUE//

Begin

         If sdx>0 Then //Compute the coverage for the ending pixel//

        Begin //Correct the endpoint(s) if start point <> end point//

            Coverage_S=(1+c1/2-y2_fr)*1+.5*e1*1r**2//consider x2_fr=1//

             Write_Pixel(x,y,Coverage_S)

             Coverage_T=c1*1-Coverage_S//T is above  the line and has the smaller coverage//

             Write_Pixel(x+incrx2*~x_major,y+incry2*x_major,Coverage_T)

       End Else

       Begin

             Coverage_S=(c1/2-y2fr)*1+.5*e1*1**2    //S is below  and has the smaller coverage//

             Write_Pixel(x-incrx2*~x_major,y-incry2*x_major,Coverage_S)

             Coverage_T=c1*1-Coverage_S//T is above  the line and has the larger coverage//
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             Write_Pixel(x,y,Coverage_T)

        End

End Else

Begin   //For SKIPLAST=FALSE REX3 fills the last pixel //

  If d<0 Then // s<t , execute a horizontal step//

  Begin

     x=x+incrx1 //advance to next pixel//

     y=y+incry1

     s=s+e1

     sdx=sdx+2dy=sdx+incr1

  End Else// d>0 results into s>t>0, execute a 45 degree step//

  Begin//45 degree move//

     x=x+incrx2

     y=y+incry2

     s=s+e2   // this brings s back into the interval [-1,1] //

     sdx=sdx+2(dy-dx)=sdx+incr2

     End

     If sdx>0 Then

     Begin

         Coverage_T=aa_table(s_frac)

          Write_Pixel(x+incrx2*~x_major,y+incry2*x_major,Coverage_T)

          Coverage_S=aa_table(~s_frac)

          Write_Pixel(x,y,Coverage_S)

     End Else

     Begin

Coverage_T=aa_table(~s_frac)

          Write_Pixel(x,y,Coverage_T)

          Coverage_S=aa_table(s_frac)

          Write_Pixel(x-incrx2*~x_major,y-incry2*x_major,Coverage_S)

End

 End

End //SKIPLAST//

End
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Code for antialiased  line with fractional endpoints and angle compensation, with endpoint filtering

Procedure Write_Pixel(x,y,alpha)             // 0=< alpha<=1  due to looking it up in aa_table //

global variable : new_color  //new_color is the current drawing color//

Begin

  Read_Framebuffer(x,y,bckg_color) //read the background color at location (x,y)//

       color=alpha*new_color + (1-alpha)*bckg_color// alpha represents pixel coverage//

       Write_Framebuffer(x,y,color) //write back the resultant of blending to location (x,y)//

  End

Procedure GL_AAE_Bresenham(x1,y1,x2,y2,e1,c1)

fixed  : x1,y1,x2,y2,e1 //CPU computes the octant//

aray : aa_table0 (s,e1) ,aa_table1(1-s,e1)    // This array is a function of slope and is indexed with s //

integer : Octant,x10,y10,x20,y20

integer : x_major//x_major=1 in octants 1,4,5,8 //

//e1=dy/dx for x-major .  e1=dx/dy for y-major where dx=ABS(x1-x2) and dy=ABS(y1-y2)//

//Compute the octant-independent values//

e2=e1-1.0

x10=int(x1) , y10=int(y1)//REX3 computes the fixed->int and the d term//

x20=int(x2) , y20=int(y2)

x=x10, y=y10

dx=ABS(x1-x2), dy=ABS(y1-y2)

dx_i=ABS(x10-x20)-1, dy_i=ABS(y10-y20)-1

Case Octant of (x2-x1,y2-y1,dx-dy) :

1:    d=3dy-2dx , incr1=2dy , incr2=2(dy-dx), Loop=dx_i  //compute the octant-dependent values//

        incrx1=1,incrx2=1,incry1=0,incry2=1 ,x_major=1

2:    d=3dx-2dy , incr1=2dx , incr2=2(dx-dy), Loop=dy_i //compute the octant-dependent values//

        incrx1=0,incrx2=1,incry1=1,incry2=1 ,x_major=0

        temp=x1_fract

        x1_fract=y1_fract

        y1_fract=temp

        temp=x2_fract

        x2_fract=y2_fract

        y2_fract=temp

        temp=dx
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        dx=dy

        dy=temp

3:    d=3dx-2dy , incr1=2dx , incr2=2(dx-dy), Loop=dy_i //compute the octant-dependent values//

        incrx1=0,incrx2=-1,incry1=1,incry2=1 ,x_major=1

        temp=1-x1_fract/use 1-x_fract left of y-axis//

        x1_fract=y1_fract

        y1_fract=temp

temp=1-x2_fract/use 1-x_fract left of y-axis//

        x2_fract=y2_fract

        y2_fract=temp

        temp=dx

        dx=dy

        dy=temp

4:    d=3dy-2dx , incr1=2dy , incr2=2(dy-dx), Loop=dx_i //compute the octant-dependent values//

        incrx1=-1,incrx2=-1,incry1=0,incry2=1 ,x_major=0

        x1_fract=1-x1_fract//use 1-x_fract left of y-axis//

x2_fract=1-x2_fract

5:    d=3dy-2dx , incr1=2dy , incr2=2(dy-dx), Loop=dx_i //compute the octant-dependent values//

        incrx1=-1,incrx2=-1,incry1=0,incry2=-1 ,x_major=1

        x1_fract=1-x1_fract//use 1-x_fract left of y-axis//

        y1_fract=1-y1_fract//use 1-y_fract below  of x-axis//

        x2_fract=1-x2_fract//use 1-x_fract left of y-axis//

        y2_fract=1-y2_fract//use 1-y_fract below  of x-axis//

6:    d=3dx-2dy , incr1=2dx , incr2=2(dx-dy), Loop=dy_i //compute the octant-dependent values//

        incrx1=0,incrx2=-1,incry1=-1,incry2=-1 ,x_major=0

        temp=1-x1_fract

        x1_fract=1-y1_fract//use 1-y_fract below  of x-axis//

        y1_fract=temp

        temp=1-x2_fract

        x2_fract=1-y2_fract//use 1-y_fract below  of x-axis//

        y2_fract=temp

        temp=dx

        dx=dy

        dy=temp

7:    d=3dx-2dy , incr1=2dx , incr2=2(dx-dy), Loop=dy_i //compute the octant-dependent values//

        incrx1=0,incrx2=1,incry1=-1,incry2=-1 ,x_major=0
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        temp=1-y1_fract//use 1-y_fract below  of x-axis//

        y1_fract=x1_fract

        x1_fract=temp

        temp=1-y2_fract//use 1-y_fract below  of x-axis//

        y2_fract=x2_fract

        x2_fract=temp

        temp=dx

        dx=dy

        dy=temp

8:    d=3dy-2dx , incr1=2dy , incr2=2(dy-dx), Loop=dx_i //compute the octant-dependent values//

        incrx1=1,incrx2=1,incry1=0,incry2=-1 ,x_major=1

        y1_fract=1-y1_fract//use 1-y_fract below  of x-axis//

        y2_fract=1-y2_fract

s=y1_frac-0.5+e1(0.5-x1_frac)        //s for the first pixel//

        sdx=2[(y1_frac-0.5)dx+(0.5-x1_frac)dy]=dy-dx+2(dx*y1_fract-dy*x1_fract)    // sdx=s*2dx is an

                                                                                                                          infinitely precise number //

If s<0 Then      // The correct , positive s, is in this case s=y1_frac+0.5+e1(0.5-x1_frac)  = s+1 //

Begin

        s=s+1

        sdx=sdx+2*dx   //when s=s+1 sdx=sdx+2*dx //

End

        d=d+2(dx*y1_fract-dy*x1_fract) //adjust d due to fractional endpoints,this is d for second pixel//

        // s=y1_fract+e1*(1.5-x1_fract)-0.5 this would have been s for second pixel , s=s+e1 //

E=d-2dx

If E>0 Then

Begin

   d=E

End

If SKIPFIRST=TRUE Then

Begin

      If sdx>0 Then //Compute the coverage for the starting pixel//

        Begin      // THE BOLD CODE MAY BE  EXECUTED ON THE HOST IF SKIPFIRST=TRUE//

           Coverage_T=(y1_fr-1+c1/2)(1-x1_fr)+.5*e1(1-x1_fr)**2    //T has the smaller coverage//

           Write_Pixel(x+incrx2*~x_major,y+incry2*x_major,Coverage_T)
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           Coverage_S=(1-x1_fr)*c1-Coverage_T   //S is below the line and has the larger coverage//

           Write_Pixel(x,y,Coverage_S)

        End  Else    // sdx<0 //

        Begin

             Coverage_T=(y1_fr+c1/2)(1-x1_fr)+.5*e1(1-x1_fr)**2//T has the  larger coverage//

             Write_Pixel(x,y,Coverage_T)

              Coverage_S=(1-x1_fr)*c1-Coverage_T     //S is below the line and has the larger coverage//

              Write_Pixel(x-incrx2*~x_major,y-incry2*x_major,Coverage_S)

        End

End  Else

Begin

        If sdx>0 Then //Compute the coverage for the starting pixel//

        Begin      // THIS CODE  EXECUTED BY REX3 BECAUSE SKIPFIRST=FALSE//

       Coverage_T=aa_table(s_frac*(1-x1_fr))    //T he coverages are inversely proportional with x1_fr//

              Write_Pixel(x+incrx2*~x_major,y+incry2*x_major,Coverage_T)

              Coverage_S=aa_table(~s_frac*(1-x1_fr))   //S is below the line and has the larger coverage//

              Write_Pixel(x,y,Coverage_S)

        End Else // sdx<0//

              Coverage_T=aa_table(~s_frac*(1-x1_fr)) //T has the  larger coverage//

              Write_Pixel(x,y,Coverage_T)

              Coverage_S=aa_table(s_frac*(1-x1_fr))     //S is below the line and has the larger coverage//

              Write_Pixel(x-incrx2*~x_major,y-incry2*x_major,Coverage_S)

        End

End // SKIPFIRST //

For i=1 to Loop-1  Do

Begin

  If d<0 Then // s<t , execute a horizontal step//

  Begin

     x=x+incrx1 //advance to next pixel//

     y=y+incry1

     d=d+incr1 //compute new values for d and s//

     s=s+e1

     sdx=sdx+2dy=sdx+incr1

  End Else// d>0 results into s>t>0, execute a 45 degree step//

  Begin//45 degree move//

     x=x+incrx2
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     y=y+incry2

   d=d+incr2 //compute new values for d and s//

     s=s+e2                // this brings s back into the interval [-1,1] //

     sdx=sdx+2(dy-dx)=sdx+incr2

  End

   If sdx>0 Then

   Begin

         Coverage_T=aa_table(s_frac)         // s_frac=Fraction(s) //

          Write_Pixel(x+incrx2*~x_major,y+incry2*x_major,Coverage_T)

          Coverage_S=aa_table(~s_frac)      //~s_frac=1-s_frac //

          Write_Pixel(x,y,Coverage_S)

   End Else

   Begin

Coverage_T=aa_table(~s_frac)

          Write_Pixel(x,y,Coverage_T)

          Coverage_S=aa_table(s_frac)

          Write_Pixel(x-incrx2*~x_major,y-incry2*x_major,Coverage_S)

End

End

If  SKIPLAST=TRUE Then //THIS CODE MAY BE  EXECUTED ON THE HOSTIF SKIPLAST=TRUE//

Begin

       If sdx>0 Then //Compute the coverage for the ending pixel//

        Begin//Correct the endpoint(s) if start point <> end point//

         Coverage_S=(1+c1/2-y2_fr)x2_fr+.5*e1*x2_fr**2//s is below  and has the larger coverage//

         Write_Pixel(x,y,Coverage_S)

         Coverage_T=c1*x2fr-Coverage_S//T is above  the line and has the smaller coverage//

         Write_Pixel(x+incrx2*~x_major,y+incry2*x_major,Coverage_T)

     End Else //  sdx<0 //

     Begin

         Coverage_S=(c1/2-y2fr)x2fr+.5*e1*x2fr**2    //S is below  and has the smaller coverage//

         Write_Pixel(x-incrx2*~x_major,y-incry2*x_major,Coverage_S)

         Coverage_T=c1*x2_fr-Coverage_S//T is above  the line and has the larger coverage//

          Write_Pixel(x,y,Coverage_T)

        End

End Else

Begin   //For SKIPLAST=FALSE REX3 fills the last pixel //
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  If d<0 Then // s<t , execute a horizontal step//

  Begin

     x=x+incrx1 //advance to next pixel//

     y=y+incry1

     s=s+e1

     sdx=sdx+2dy=sdx+incr1

  End Else// d>0 results into s>t>0, execute a 45 degree step//

  Begin//45 degree move//

     x=x+incrx2

     y=y+incry2

     s=s+e2   // this brings s back into the interval [-1,1] //

     sdx=sdx+2(dy-dx)=sdx+incr2

     End

     If sdx>0 Then   //The coverages are directly proportional with x2_fr//

     Begin

         Coverage_T=aa_table(s_frac*x2_fr)

          Write_Pixel(x+incrx2*~x_major,y+incry2*x_major,Coverage_T)

          Coverage_S=aa_table(~s_frac*x2_fr)

          Write_Pixel(x,y,Coverage_S)

     End Else

     Begin

Coverage_T=aa_table(~s_frac*x2_fr)

          Write_Pixel(x,y,Coverage_T)

          Coverage_S=aa_table(s_frac*x2_fr)

          Write_Pixel(x-incrx2*~x_major,y-incry2*x_major,Coverage_S)

End

 End

End //SKIPLAST//

End
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Code for polygon antialiasing  top edge  with fractional endpoints

Procedure Write_Pixel(x,y,alpha)// 0=< alpha<=1 //

Begin

global variable : new_color  //new_color is the current drawing color//

Read_Framebuffer(x,y,bckg_color)  //read the background color at location (x,y)//

color=alpha*new_color + (1-alpha)*bckg_color // alpha represents pixel coverage//

Write_Framebuffer(x,y,color) //write back the resultant of blending to location (x,y)//

End

Procedure GL_ AA_Bresenham_Edge(x1,y1,x2,y2,e1)

fixed : x1,y1,x2,y2,e1    //e1=dy/dx for x-major .  e1=dx/dy for y-mjor //

array : aa_table0(s) // for antialiasing edges we may not need angle compensation //

integer : x_major//x_major=1  in octants 1,4,5,8 //

//Compute the octant-independent values//

e2=e1-1

x10=int(x1) , y10=int(y1)//REX3 computes the fixed->int and the d term//

x20=int(x2) , y20=int(y2)

x=x1, y=y1

dx=ABS(x1-x2), dy=ABS(y1-y2)

dx_i=ABS(x10-x20)-1, dy_i=ABS(y10-y20)-1

Case Octant of (x2-x1,y2-y1,dx-dy:

1:    d=3dy-2dx , incr1=2dy , incr2=2(dy-dx), Loop=dx_i  //compute the octant-dependent values//

        incrx1=1,incrx2=1,incry1=0,incry2=1 ,x_major=1

2:    d=3dx-2dy , incr1=2dx , incr2=2(dx-dy), Loop=dy_i  //compute the octant-dependent values//

        incrx1=0,incrx2=1,incry1=1,incry2=1 ,x_major=0

        temp=x1_fract

        x1_fract=y1_fract

y1_fract=temp

temp=dx

        dx=dy

dy=temp

3:    d=3dx-2dy , incr1=2dx , incr2=2(dx-dy), Loop=dy_i  //compute the octant-dependent values//

        incrx1=0,incrx2=-1,incry1=1,incry2=1 ,x_major=0
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       temp=x1_fract//use 1-x_fract left of y-axis//

       x1_fract=y1_fract

       y1_fract=temp

       temp=dx

       dx=dy

       dy=temp

4:    d=3dy-2dx , incr1=2dy , incr2=2(dy-dx), Loop=dx_i  //compute the octant-dependent values//

        incrx1=-1,incrx2=-1,incry1=0,incry2=1 ,x_major=1

        x1_fract=1-x1_fract//use 1-x_fract left of y-axis//

5:    d=2dy-dx , incr1=2dy , incr2=2(dy-dx), Loop=dx_i  //compute the octant-dependent values//

        incrx1=-1,incrx2=-1,incry1=0,incry2=-1

        x1_fract=1-x1_fract//use 1-x_fract left of y-axis//

        y1_fract=1-y1_fract//use 1-y_fract below  of x-axis//

6:    d=3dx-2dy , incr1=2dx , incr2=2(dx-dy), Loop=dy_i  //compute the octant-dependent values//

        incrx1=0,incrx2=-1,incry1=-1,incry2=-1 ,x_major=0

        temp=1-x1_fract

x1_fract=1-y1_fract//use 1-y_fract below  of x-axis//

        y1_fract=temp

        temp=dx

        dx=dy

        dy=temp

7:    d=3dx-2dy , incr1=2dx , incr2=2(dx-dy), Loop=dy_i //compute the octant-dependent values//

        incrx1=0,incrx2=1,incry1=-1,incry2=-1 ,x_major=0

       temp=1-y1_fract//use 1-y_fract below  of x-axis//

       y1_fract=x1_fract

       x1_fract=temp

       temp=dx

       dx=dy

       dy=temp

8:    d=3dy-2dx , incr1=2dy , incr2=2(dy-dx), Loop=dx_i //compute the octant-dependent values//

        incrx1=1,incrx2=1,incry1=0,incry2=-1 ,x_major=1

        y1_fract=1-y1_fract//use 1-y_fract below  of x-axis//

d=d+2(dx*y1_fract-dy*x1_fract) //adjust d due to fractional endpoints//

s=y1_fract-0.5+e1*(.5-x1_fract)

sdx=2[(y1_fract-0.5)dx+(.5-x1_fract)dy]=dy-dx+2(dx*y1_fract-dy*x1_fract)
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If s<0 Then      // The correct , positive s, is in this case s=y1_frac+0.5+e1(0.5-x1_frac)  = s+1 //

Begin

        s=s+1

        sdx=sdx+2*dx   //when s=s+1 sdx=sdx+2*dx //

End

E=d-2dx

If E>0 Then

Begin

  d=E

End

If SKIPFIRST=TRUE Then

Begin

      If sdx>0 Then //Compute the coverage for the starting pixel//

        Begin      // THE BOLD CODE MAY BE  EXECUTED ON THE HOST IF SKIPFIRST=TRUE//

           Coverage_T=(y1_fr-1+c1/2)(1-x1_fr)+.5*e1(1-x1_fr)**2    //T has the smaller coverage//

           Write_Pixel(x+incrx2*~x_major,y+incry2*x_major,Coverage_T)

         End  Else    // sdx<0 //

         Begin

             Coverage_T=(y1_fr+c1/2)(1-x1_fr)+.5*e1(1-x1_fr)**2//T has the  larger coverage//

             Write_Pixel(x,y,Coverage_T)

         End

End  Else

Begin

        If sdx>0 Then //Compute the coverage for the starting pixel//

        Begin      // THIS CODE  EXECUTED BY REX3 BECAUSE SKIPFIRST=FALSE//

       Coverage_T=aa_table(s_frac*(1-x1_fr))    //T he coverages are inversely proportional with x1_fr//

              Write_Pixel(x+incrx2*~x_major,y+incry2*x_major,Coverage_T)

        End Else // sdx<0//

              Coverage_T=aa_table(~s_frac*(1-x1_fr)) //T has the  larger coverage//

              Write_Pixel(x,y,Coverage_T)

        End

End // SKIPFIRST //

For i=1 to Loop-1  Do

Begin

  If d<0 Then // s<t , execute a horizontal step//
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  Begin

x=x+incrx1 //advance to next pixel//

     y=y+incry1

     d=d+incr1 //compute new values for d and s//

     s=s+e1

     sdx=sdx+2dy=sdx+incr1

  End Else//s>t>0, execute a 45 degree step//

  Begin//45 degree move//

x=x+incrx2

     y=y+incry2

    d=d+incr2

     s=s+e2

     sdx=sdx+2(dy-dx)=sdx+incr2

  End

  If sdx>0 Then

  Begin

         Coverage_T=aa_table(s_frac)     // only the top pixel is antialiased //

         Write_Pixel(x+incrx2*~x_major,y+incry2*x_major,Coverage_T)

  End Else

  Begin

         Coverage_T=aa_table(~s_frac)     // only the top pixel is antialiased //

         Write_Pixel(x,y,Coverage_T)

   End

  End // If//

End // For //

If  SKIPLAST=TRUE Then //THIS CODE MAY BE  EXECUTED ON THE HOSTIF SKIPLAST=TRUE//

Begin

       If sdx>0 Then //Compute the coverage for the ending pixel//

        Begin//Correct the endpoint(s) if start point <> end point//

         Coverage_T=c1*x2fr-Coverage_S//T is above  the line and has the smaller coverage//

         Write_Pixel(x+incrx2*~x_major,y+incry2*x_major,Coverage_T)

     End Else //  sdx<0 //

     Begin

         Coverage_T=c1*x2_fr-Coverage_S//T is above  the line and has the larger coverage//

          Write_Pixel(x,y,Coverage_T)

        End
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End Else

Begin   //For SKIPLAST=FALSE REX3 fills the last pixel //

  If d<0 Then // s<t , execute a horizontal step//

  Begin

     x=x+incrx1 //advance to next pixel//

     y=y+incry1

     s=s+e1

     sdx=sdx+2dy=sdx+incr1

  End Else// d>0 results into s>t>0, execute a 45 degree step//

  Begin//45 degree move//

     x=x+incrx2

     y=y+incry2

     s=s+e2   // this brings s back into the interval [-1,1] //

     sdx=sdx+2(dy-dx)=sdx+incr2

     End

     If sdx>0 Then   //The coverages are directly proportional with x2_fr//

     Begin

         Coverage_T=aa_table(s_frac*x2_fr)

          Write_Pixel(x+incrx2*~x_major,y+incry2*x_major,Coverage_T)

     End Else

     Begin

Coverage_T=aa_table(~s_frac*x2_fr)

          Write_Pixel(x,y,Coverage_T)

End

 End

End //SKIPLAST//

End
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Code for polygon antialiasing  bottom  edge  with fractional endpoints

Procedure Write_Pixel(x,y,alpha)// 0=< alpha<=1 //

Begin

global variable : new_color  //new_color is the current drawing color//

Read_Framebuffer(x,y,bckg_color)  //read the background color at location (x,y)//

color=alpha*new_color + (1-alpha)*bckg_color // alpha represents pixel coverage//

Write_Framebuffer(x,y,color) //write back the resultant of blending to location (x,y)//

End

Procedure GL_ AA_Bresenham_Edge(x1,y1,x2,y2,e1)

fixed : x1,y1,x2,y2,e1    //e1=dy/dx for x-major .  e1=dx/dy for y-mjor //

array : aa_table0(s) // for antialiasing edges we may not need angle compensation //

integer : x_major//x_major=1  in octants 1,4,5,8 //

//Compute the octant-independent values//

e2=e1-1

x10=int(x1) , y10=int(y1)//REX3 computes the fixed->int and the d term//

x20=int(x2) , y20=int(y2)

x=x1, y=y1

dx=ABS(x1-x2), dy=ABS(y1-y2)

dx_i=ABS(x10-x20)-1, dy_i=ABS(y10-y20)-1

Case Octant of (x2-x1,y2-y1,dx-dy:

1:    d=3dy-2dx , incr1=2dy , incr2=2(dy-dx), Loop=dx_i  //compute the octant-dependent values//

        incrx1=1,incrx2=1,incry1=0,incry2=1 ,x_major=1

2:    d=3dx-2dy , incr1=2dx , incr2=2(dx-dy), Loop=dy_i  //compute the octant-dependent values//

        incrx1=0,incrx2=1,incry1=1,incry2=1 ,x_major=0

        temp=x1_fract

        x1_fract=y1_fract

y1_fract=temp

temp=dx

        dx=dy

dy=temp

3:    d=3dx-2dy , incr1=2dx , incr2=2(dx-dy), Loop=dy_i  //compute the octant-dependent values//

        incrx1=0,incrx2=-1,incry1=1,incry2=1 ,x_major=0
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       temp=x1_fract//use 1-x_fract left of y-axis//

       x1_fract=y1_fract

       y1_fract=temp

       temp=dx

       dx=dy

       dy=temp

4:    d=3dy-2dx , incr1=2dy , incr2=2(dy-dx), Loop=dx_i  //compute the octant-dependent values//

        incrx1=-1,incrx2=-1,incry1=0,incry2=1 ,x_major=1

        x1_fract=1-x1_fract//use 1-x_fract left of y-axis//

5:    d=2dy-dx , incr1=2dy , incr2=2(dy-dx), Loop=dx_i  //compute the octant-dependent values//

        incrx1=-1,incrx2=-1,incry1=0,incry2=-1

        x1_fract=1-x1_fract//use 1-x_fract left of y-axis//

        y1_fract=1-y1_fract//use 1-y_fract below  of x-axis//

6:    d=3dx-2dy , incr1=2dx , incr2=2(dx-dy), Loop=dy_i  //compute the octant-dependent values//

        incrx1=0,incrx2=-1,incry1=-1,incry2=-1 ,x_major=0

        temp=1-x1_fract

x1_fract=1-y1_fract//use 1-y_fract below  of x-axis//

        y1_fract=temp

        temp=dx

        dx=dy

        dy=temp

7:    d=3dx-2dy , incr1=2dx , incr2=2(dx-dy), Loop=dy_i //compute the octant-dependent values//

        incrx1=0,incrx2=1,incry1=-1,incry2=-1 ,x_major=0

       temp=1-y1_fract//use 1-y_fract below  of x-axis//

       y1_fract=x1_fract

       x1_fract=temp

       temp=dx

       dx=dy

       dy=temp

8:    d=3dy-2dx , incr1=2dy , incr2=2(dy-dx), Loop=dx_i //compute the octant-dependent values//

        incrx1=1,incrx2=1,incry1=0,incry2=-1 ,x_major=1

        y1_fract=1-y1_fract//use 1-y_fract below  of x-axis//

d=d+2(dx*y1_fract-dy*x1_fract) //adjust d due to fractional endpoints//

s=y1_fract-0.5+e1*(.5-x1_fract)

sdx=2[(y1_fract-0.5)dx+(.5-x1_fract)dy]=dy-dx+2(dx*y1_fract-dy*x1_fract)
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If s<0 Then      // The correct , positive s, is in this case s=y1_frac+0.5+e1(0.5-x1_frac)  = s+1 //

Begin

        s=s+1

        sdx=sdx+2*dx   //when s=s+1 sdx=sdx+2*dx //

End

E=d-2dx

If E>0 Then

Begin

  d=E

End

If SKIPFIRST=TRUE Then

Begin

      If sdx>0 Then //Compute the coverage for the starting pixel//

        Begin      // THE BOLD CODE MAY BE  EXECUTED ON THE HOST IF SKIPFIRST=TRUE//

           Coverage_S=(1-x1_fr)*c1-Coverage_T   //S is below the line and has the larger coverage//

           Write_Pixel(x,y,Coverage_S)

        End  Else    // sdx<0 //

        Begin

              Coverage_S=(1-x1_fr)*c1-Coverage_T     //S is below the line and has the larger coverage//

              Write_Pixel(x-incrx2*~x_major,y-incry2*x_major,Coverage_S)

        End

End  Else

Begin

        If sdx>0 Then //Compute the coverage for the starting pixel//

        Begin      // THIS CODE  EXECUTED BY REX3 BECAUSE SKIPFIRST=FALSE//

              Coverage_S=aa_table(~s_frac*(1-x1_fr))   //S is below the line and has the larger coverage//

              Write_Pixel(x,y,Coverage_S)

        End Else // sdx<0//

              Coverage_S=aa_table(s_frac*(1-x1_fr))     //S is below the line and has the larger coverage//

              Write_Pixel(x-incrx2*~x_major,y-incry2*x_major,Coverage_S)

        End

End // SKIPFIRST //

For i=1 to Loop-1  Do

Begin

  If d<0 Then // s<t , execute a horizontal step//
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  Begin

x=x+incrx1 //advance to next pixel//

     y=y+incry1

     d=d+incr1 //compute new values for d and s//

     s=s+e1

     sdx=sdx+2dy=sdx+incr1

  End Else//s>t>0, execute a 45 degree step//

  Begin//45 degree move//

x=x+incrx2

     y=y+incry2

    d=d+incr2

     s=s+e2

     sdx=sdx+2(dy-dx)=sdx+incr2

  End

  If sdx>0 Then

  Begin

         Coverage_S=aa_table(~s_frac)     // only the bottom  pixel is antialiased //

        Write_Pixel(x,y,Coverage_S)

  End Else

  Begin

         Coverage_S=aa_table(~s_frac)     // only the bottom  pixel is antialiased //

         Write_Pixel(x-incrx2*~x_major,y-incry2*x_major,Coverage_S)

    End

  End // If//

End // For //

If  SKIPLAST=TRUE Then //THIS CODE MAY BE  EXECUTED ON THE HOSTIF SKIPLAST=TRUE//

Begin

       If sdx>0 Then //Compute the coverage for the ending pixel//

        Begin//Correct the endpoint(s) if start point <> end point//

         Coverage_S=(1+c1/2-y2_fr)x2_fr+.5*e1*x2_fr**2//s is below  and has the larger coverage//

         Write_Pixel(x,y,Coverage_S)

      End Else //  sdx<0 //

     Begin

         Coverage_S=(c1/2-y2fr)x2fr+.5*e1*x2fr**2    //S is below  and has the smaller coverage//

         Write_Pixel(x-incrx2*~x_major,y-incry2*x_major,Coverage_S)

         End
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End Else

Begin   //For SKIPLAST=FALSE REX3 fills the last pixel //

  If d<0 Then // s<t , execute a horizontal step//

  Begin

     x=x+incrx1 //advance to next pixel//

     y=y+incry1

     s=s+e1

     sdx=sdx+2dy=sdx+incr1

  End Else// d>0 results into s>t>0, execute a 45 degree step//

  Begin//45 degree move//

     x=x+incrx2

     y=y+incry2

     s=s+e2   // this brings s back into the interval [-1,1] //

     sdx=sdx+2(dy-dx)=sdx+incr2

     End

     If sdx>0 Then   //The coverages are directly proportional with x2_fr//

     Begin

          Coverage_S=aa_table(~s_frac*x2_fr)

          Write_Pixel(x,y,Coverage_S)

     End Else

     Begin

          Coverage_S=aa_table(s_frac*x2_fr)

          Write_Pixel(x-incrx2*~x_major,y-incry2*x_major,Coverage_S)

End

 End

End //SKIPLAST//

End
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3.7 Double Buffering

Double-buffered drawing is supported for pixels. Allowed formats are described in Section 3.9, Framebuffer
Formats.

Double-buffering for writes is specified by the pixel depth and format in DRAWMODE1, and implicitly via the
WRITEMASK, which must be set to match the Table in Section 3.9. Writes to both buffers use replicated
source data.

Double-buffered reads are explicitly specified by DRAWMODE1 bit DBLSRC.  Buffer0 (or BufferA) is the
lower significant pixel within the framebuffer data value:  see Section 3.9 for details.  Pixel format is again
specified as above, via DRAWMODE1. This handles cases of R-M-W drawing, and host/DMA reads of dou-
ble-buffered framebuffer.

Double buffering brings about a peculiarity with LOGICOP function:  while the LO_DST normally can be
viewed as a NOOP (write result is simply the original, destination value),  the case of double buffer source
not equal to double buffer destination actually must perform a copy from one buffer to the other.  Therefore
the REX3 hardware will treat LO_DST as a copy, not a NOOP.

3.8 Framebuffer Data Values

 Framebuffer data includes pixel, overlay, and CID types;  one is specified for each read or write operation,
using the PLANES field of DRAWMODE1 register.

There are two main sources for drawn data:  the DDA, and the host data register, RWHOST1,0. Data source
is specified by DRAWMODE0 register COLORHOST, ALPHAHOST. For host data, COLORHOST, AL-
PHAHOST=1 and the data is interpreted using DRAWMODE1 as specified by fields RWPACKED, RWDOU-
BLE, HOSTDEPTH. The data is assumed within legal range, no clamping necessary. COLORHOST,
ALPHAHOST=0 directs the graphics pipeline to make use of the DDA values;  in this case, SHADE=1 spec-
ifies linear shading is performed for successive, iterated values. The bit RGBMODE specifies whether color
index or RGB values are to be calculated. DDA values of R,G,B,A  are clamped each iteration before send-
ing down the pipeline. As each of these components has an additional, overflow bit at the DDA, a normalized
range of [-.5 to +1.5)  is handled prior to clamping. Color index DDA values can be clamped to desired range
by setting the DRAWMODE0 bit ENCICLAMP.

Normally either the DDA or the host value is used, but there is an exception for blend function where both
are taken: ALPHAHOST=1  with COLORHOST=0 specifies the HOSTRW1,0 alpha fields are to be used to
blend the DDA R,G,B components. For more information on the Blend Functions, see Section 3.8.4.

The framebuffer pixel depth to be drawn is specified by DRAWMODE1 field DRAWDEPTH. In conjunction
with the rest of the modes mentioned, framebuffer format can be controlled as shown in Section 3.9.

Other options or modes which affect pixel value include dither, round, antialias, blend, pattern, and logicop.
These are covered in the following sections.

3.8.1 Patterning and Stippling

There are two 32b pattern registers in REX3:  LSPATTERN and ZPATTERN. They are enabled via DRAW-
MODE0 bits ENLSPATTERN, ENZPATTERN. This determines whether each are used in the pixel path, and
whether the pattern iterates during drawing. Each of these patterns can be specified as transparent (mask
out pixels corresponding to pattern=0), or opaque (substitute a background color for pixels corresponding
to pattern=0), via bits LSOPAQUE, ZOPAQUE. Opaque patterning relies the background color stored in the
COLORBACK register.

The LSPATTERN is used mainly for lines by the GL, or more generally by X11. The LSMODE register con-
tains a length specifier LSLENGTH (17-32) for pattern recirculation, and a repeat per bit specifier (1-255)
LSREPEAT to describe iterations of each pattern bit. Context switching is aided by the LSRCOUNT field,
which contains the iteration state of LSREPEAT counter. The LSREPEAT function is for linedraw only, and
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must be set to ‘1’ by host otherwise.  Similarly, the LSADVLAST function is cleared for connected vectors
case only, and must be set by host otherwise.

Wide lines require the line stipple pattern to be reset identically for each wide line segment;  this is accom-
plished via the state in registers LSPATSAVE and LSMODE field LSRCNTSAVE. At the start of drawing a
wide line, these registers are initialized to the same values as LSPATTERN, LSRCOUNT respectively. For
all but the first line of a wide line segment, the saved versions are copied into the working registers, using
command with GO “LSRESTORE”. Upon completion of the last line of a wide line segment, command with
GO “LSSAVE” is issued to copy iterated state into the saved registers.

The ZPATTERN is used for patterning and as a Z write enable mask (soft Z). It is always 32b long and re-
peats.

When both pattern are enabled, the background color is substituted into the pixel path iff not both pattern
bits are asserted (e.g., LSPATTERN & ZPATTERN bitwise false). The pixel location can be written iff {(LSO-
PAQUE+LSPATTERN) & (ZOPAQUE+ZPATTERN)} is bitwise true.

Z buffering of antialiased lines makes use of both patterns, with ZPATTERN used for the primary pixel mask,
and the LSPATTERN used for the secondary pixel mask.
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3.8.2 Dither

REX3 uses the 4 x 4 Bayer dither matrix.  The seventeen intensities created by this dither matrix are illus-
trated below.

4 x 4 Bayer Dither Matrix.

The least significant two bits of the window X and Y addresses are used to select a value from the dither
matrix.  The matrix value is then compared against the 4 msbs of the target color fraction.  The pixel at X,Y
is intensified if the desired value is greater than the matrix value, otherwise it is not intensified.

Because this operation would create an overall brightening of the image (and clamping at the high end), the
pre-dithered pixel values are scaled prior to matrix comparison.

DIthering is enabled by setting the DRAWMODE1 register DITHER bit.

3.8.2.1 RGB Dithering

If enabled, REX3 dithers 1, 2, 3, and 4-bit stored RGB pixel components.  No dithering is performed on 24-
bit RGB.  The following illustrates REX3 scaled dithering for 1 through 4-bit RGB components, given an 8-
bit target pixel value, P[7:0]:

1-bit (1-2-1):

Scale P[7:0] by 128/255 (≈ 1/2):

1. S = P[7:3] x 1/2 = P[7:3] - P[7:4]

2. if  (S[3:0] > DitherMatrix[x,y])  then  D = S[4] + 1

else  D = S[4]

2-bit (1-2-1 and 3-3-2):

Scale P[7:0] by 192/255 (≈ 3/4):

1. S = P[7:2] - P[7:2]/4 = P[7:2] - P[7:4]

2. if  (S[3:0] > DitherMatrix[x,y])  then  D = S[5:4] + 1

else  D =  S[5:4]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
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3-bit (3-3-2):

Scale P[7:0] by 224/255 (≈ 7/8):

1. S = P[7:1] - P[7:4]

2. if  (S[3:0] > DitherMatrix[x,y])  then  D = S[6:4] + 1

else  D = S[6:4]

4-bit (4-4-4):

Scale P[7:0] by 240/255 (≈ 15/16):

1. S = P[7:0] - P[7:4]

2. if  (S[3:0] > DitherMatrix[x,y])  then  D = S[7:4] + 1

else  D = S[7:4]

3.8.2.2 Color Index Dithering

No scaling is performed for CI pixels.  In REX3, the CI fraction is clamped before the dither stage so that
no overflow will occur due to the dither increment operation.

For antialiased CI, the integer 4 lsbs are replaced by a 4-bit AWEIGHT (intensity).  REX3 then dithers by
incrementing CI(4).  The DDA-section muxes the original integer 4 lsbs to the CI fraction, so that dithering
logic always uses the same 4-bit field for matrix comparison.  (Dithering has no effect on 4-bit antialiased
pixels).

The following illustrates CI dithering given a 12-bit integer and 4-bit fraction, I[11:0]).F[3:0]:

CI 4, 8 and 12-bit, non-antialiased:

if  (F[3:0] > DitherMatrix[x,y])  then  D = I[11:0] + 1

else  D =I[3:0]

CI 8 and 12-bit, antialias enabled:

if  (F[3:0] > DitherMatrix[x,y])  then  D = I[11:0] + 0x10

else  D =I[7:0]
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3.8.3 Color rounding

GL requires the color be rounded to the nearest color. The dithering algorithm takes care of color rounding
when dithering is enabled. When dithering is turned off, the intensity P of the color  is rounded to the nearest
color according to the algorithm described as follows.

Non-antialiased Color index: Increment the color if the MSB of the color fraction is 1.
Antialiased Color index : Increment the color by 16 if bit 3 of the iterated color integer is 1.
Antialiased 4 bit color index is not rounded.

RGB 1 bit   : The final color D[0] = P[7] the MSB bit of the color .

RGB 2 bits : S[5:0] = P[7:2] - P[7:2]/4 = P[7:2] - P[7:4]
                     The final color D[1:0] = S[5:4] + S[3]

RGB 3 bits : S[6:0] = P[7:1] - P[7:1]/8 = P[7:1] - P[7:4]
                     The final color D[2:0] = S[6:4] + S[3]

RGB 4 bits : S[7:0] = P[7:0] - P[7:0]/16 = P[7:0] - P[7:4]
                      The final color D[3:0] = S[7:4] + S[3]

RGB 8 bits : The final color D[7:0] = P[7:0] no rounding is performed.

The rounding of color is performed in the dithering block, which is before the logicop block, therefore the
source color of the logicop is rounded but the destination color and the logicop result are not rounded.

3.8.4 Logic OP

The LOGICOP field of DRAWMODE1 register defines the logicop operation used to combine the pixels
being iterated (source pixels) with the pixels already written (destination pixels). Logical operations can be
performed on any planes. Logical operations are disabled when LOGICOP=3. The logical operation is
implemented in RB2 chip.

3.8.5 Blend

In RGB mode, the system draws pixels using a function that blends the incoming (source) RGBA values
with the RGBA values that are already in the frame buffer (destination) or the background color register
COLORBACK (if BACKBLEND in DRAWMODE1 register is set to 1). The SFACTOR and DFACTOR fields
of the DRAWMODE1 register defines the source color multiplier (Fs) and destination color multiplier (Fd)
used for blending. The blending function is : Cb = Cs*Fs + Cd*Fd, where Cb is blended color , Cs is source
color and Cd is destination color. The normalization of the alpha and color components in source and des-

SFACTOR Source Multiplier (Fs)

0
1
2
3
4
5

zero
one
normalized destination color
one minus normalized destination color
normalized source alpha
one minus normalized source alpha

Table 20: SFACTOR Definition
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tination multipliers are converted from 8-bit integers to numbers between 0 and 1 by adding the MSB to the
number and dividing by 256. Thus FF becomes 1.0 and 0 remains 0.
When source multiplier is set to source alpha (SFACTOR=4), alpha component can be blended in two dif-
ferent ways depending on how BLENDALPHA bit in the DRAWMODE1 register is set. When BLENDALPHA
is set to 0, the source multiplier for blending alpha is one instead of source alpha and destination multiplier
is defined by DFACTOR. When BLENDALPHA is set to 1, alpha is blended the way defined by the SFAC-
TOR and DFACTOR.
 Blending is enabled by setting BLEND in the DRAWMODE1 register to 1. Enable blender will slow down
pixel process, therefore blender should not be enabled if it is not used. Blending and logical operation are
mutually exclusive.

DFACTOR Destination Multiplier (Fd)

0
1
2
3
4
5

zero
one
normalized source color
one minus normalized source color
normalized source alpha
one minus normalized source alpha

Table 21: DFACTOR Definition
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3.9 Framebuffer Formats

Table 22: Frame Buffer Pixel Formats

NOTES: R - Red, G - Green, B - Blue, In - Color index, Cp,n - CIDpixel, bit field, Pp,n - PUPpixel, bit field,

                 Ap,(b),n - OLAYpixel, (buffer), bit field, αn - Alpha
Programing of the Planes(2:0), Drawdepth(1:0), and RGBmode bits will allow writing the frame buffer for-
mats shown in Table 24.

BIT
PLANES

PIXEL TYPE
D
2
3

D
2
2

D
2
1

D
2
0

D
1
9

D
1
8

D
1
7

D
1
6

D
1
5

D
1
4

D
1
3

D
1
2

D
1
1

D
1
0

D
9

D
8

D
7

D
6

D
5

D
4

D
3

D
2

D
1

D
0

 24
RGB-SB
24BIT

B
0

R
0

G
0

B
1

R
1

G
1

B
2

R
2

G
2

B
3

R
3

G
3

B
4

R
4

G
4

B
5

R
5

G
5

B
6

R
6

G
6

B
7

R
7

G
7

24
RGB-DB
444+444

B
4

R
4

G
4

B
5

R
5

G
5

B
6

R
6

G
6

B
7

R
7

G
7

B
4

R
4

G
4

B
5

R
5

G
5

B
6

R
6

G
6

B
7

R
7

G
7

 24
CI-SB
12BIT - - - - - - - - - - - -

I
1
1

I
1
0

I
9

I
8

I
7

I
6

I
5

I
4

I
3

I
2

I
1

I
0

 24
CI-DB
12+12

I
1
1

I
1
0

I
9

I
8

I
7

I
6

I
5

I
4

I
3

I
2

I
1

I
0

I
1
1

I
1
0

I
9

I
8

I
7

I
6

I
5

I
4

I
3

I
2

I
1

I
0

 8/24
RGB-SB
8BIT 332 - - - - - - - - - - - - - - - -

R
5

G
5

B
6

R
6

G
6

B
7

R
7

G
7

 8/24
RGB-DB
8BIT
121+121

- - - - - - - - - - - - - - - -
G
6

B
7

R
7

G
7

G
6

B
7

R
7

G
7

8/24
CI-SB
8BIT - - - - - - - - - - - - - - - -

I
7

I
6

I
5

I
4

I
3

I
2

I
1

I
0

8/24
CI-DB
4+4 - - - - - - - - - - - - - - - -

I
3

I
2

I
1

I
0

I
3

I
2

I
1

I
0

24
RGBα - DB
3324 + 3324

α
4

α
5

α
6

α
7

R
5

G
5

B
6

R
6

G
6

B
7

R
7

G
7

α
4

α
5

α
6

α
7

R
5

G
5

B
6

R
6

G
6

B
7

R
7

G
7

24
RGBα - SB
444 8 - - - -

α
0

α
1

α
2

α
3

α
4

α
5

α
6

α
7

B
4

R
4

G
4

B
5

R
5

G
5

B
6

R
6

G
6

B
7

R
7

G
7

24
CID/AUX
2BITS-CID
2BITS-PUP
8BIT AUX

A
8
7

A
8
6

A
8
5

A
8
4

A
0
7

A
0
6

A
0
5

A
0
4

A
8
3

A
8
2

A
8
1

A
8
0

A
0
3

A
0
2

A
0
1

A
0
0

P
8
1

P
8
0

C
8
1

C
8
0

P
0
1

P
0
0

C
0
1

C
0
0

8
2BITS-CID
2BITS-PUP - - - - - - - - - - - - - - - -

P
8
1

P
8
0

C
8
1

C
8
0

P
0
1

P
0
0

C
0
1

C
0
0
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Table 23: Frame buffer formats programmed by Planes(2:0), Drawdepth(1:0) and RGBmode

Note: For all the modes shown as double buffered, software will have to set the writemask for the appropri-
ate buffer. REX3 allows writing to any one plane at a time. When writing to one of the Auxiliary planes (CID,
PUP or OVERLAY), writemask has to be set to disable writing to the other planes, e.g. the PUP and OVER-
LAY planes have to masked when writing to the cid planes. The writemask would have to match the pixel
formats shown in Table 23.

BIT
PLANES

PIXEL TYPE Planes(2:0) Drawdepth(1:0) RGBmode

 24
RGB-SB
24BIT

001 11 1

24
RGB-DB
444+444

001 10 1

 24
CI-SB
12BIT

001 10 0

 24
CI-DB
12+12

001 10 0

 8/24
RGB-SB
8BIT 332

001 01 1

 8/24
RGB-DB
121+121

001 00 1

8/24
CI-SB
8BIT

001 01 0

8/24
CI-DB
4+4

001 00 0

24
RGBα - DB
3324 + 3324

010 01 1

24
RGBα - SB
444 8

010 10 1

8/24 CID 110 xx 0

8/24
PUP 101 xx 0

24
OLY -SB
8 Bit

100 01 0
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3.10 Framebuffer PIO and DMA

REX3 supports programmed I/O and DMA reads and writes, from and to all bitplane types. All spanmode
read and write addressing must step X from left to right. Packing, unpacking, and word size are specified
via the following DRAWMODE1 bits: RWPACKED, HOSTDEPTH<1:0>, RWDOUBLE. All reads and writes
are made through the HOSTRW1,0 register pair;  for 32b access, only the HOSTRW0 is used. All writes to
framebuffer rely on COLORHOST and/or ALPHAHOST=1 to indicate HOSTRW values, not DDA, are used.

The data formats for the HOSTRW1,0 register are illustrated in the accompanying table.  Each data value
resides in a field of 8, 16, or 32 bits as programmed by HOSTDEPTH;  the leftmost field is the first one to
be used;  each value is right-aligned within the field, and zero-filled where approriate.  RGB data have com-
ponents ordered such that red is least significant, and blue (or alpha) is most significant, subfield.  Reads
of framebuffer values via HOSTRW registers return undefined values for start-byte masked locations and
for unused, trailing fields.

Pixel programmed I/O refers to host reads and writes of either pixels, overlays, popups, or CID planes.
REX3 is set up by host to the desired mode via DRAWMODE0 and DRAWMODE1. The bits STOPONX,
STOPONY should be zero, indicating one GIO word per primitive “GO”.  For pixel reads, the DRAWMODE1
PREFETCH bit must be set to 1, with the DRAWMODE0 OPCODE=read.  The set up of the DRAWMODE
registers should be performed with a write to the GO (address+800H) command, prefetching the data, re-
ducing the   I/O latency of subsequent transfers.  Pixel data may then be read from the HOSTRW register,
again with the “GO” command.  All PIO is context switchable.  Reads and writes  of the HOSTRW register
when saving or restoring context should be made without the “GO” command (address 800H bit) being set.

To the REX3, DMA’s are indistinguishable from burst activity, in that the GIO activity is identical. Any distinc-
tion between these two modes are purely at the level of the kernel and, to some lesser extent, the write buff-
er (or MC). We will hereafter refer to any burst access as DMA; the term “word” refers to the width of data
transferred in a bus cycle (for REX3, 4 or 8 bytes, depending on state of CONFIG register BUSWIDTH bit:
see Section 4.1).  To insure correct operation with the MC, all pixel DMA read transfers must be performed
with DRAWMODE1 PREFETCH = 0.  In addition, a pixel DMA read transfer may not begin until the graphics
pipe is idle (STATUS GFXBUSY = 0).  Pixel DMA transfers must be made with the “GO” command bit set.

DMA is supported for span and block addressing modes. In either case, each burst is restricted to left-to-
right stepping per scanline;  there is no support for right-to-left or mirroring. Span DMA is supported for ar-
bitrary byte count and start byte values. Block DMA may have certain restrictions, as noted below.

There are two main categories of block DMA:  linear and stride. A linear block DMA sends data across the
bus in a single string, so that a block of data in framebuffer is packed into consecutive locations within this
string and written or read as such to/from main memory. The DMA stride register in the write buffer is set to
zero for this mode (linewidth = total transfer, linecount = one). There are REX3 restrictions on this type of
block DMA:  the start byte (SB) must be zero, and the width per scanline must be an integer number of bus
words (64b words for GIO64 64b transfers, for instance). This width constraint applies to main memory stor-
age, and not the actual width in framebuffer:  the REX3 block addressing coordinates are programmed to
exactly the desired size, and unused bytes contained in the last word per block row are ignored on writes.
In effect, the end pixel of a block row must never be packed into the same GIO word as the start pixel of the
next row:  this is a REX3 restriction;  to overcome this limitation, stride block DMA is used.

Stride block DMA consists of bursts of contiguous data which are each separated by a constant number of
bytes, essentially an address gap. It supports a “virtual framebuffer” in main memory with which any block
subset can be read or written, therefore not necessarily as a single contiguous, linearly addressed string.
By definition, the linecount register in the write buffer is set to the number of framebuffer rows, and the lin-
ewidth is set to width of one row. The DMA stride register is usually set to a nonzero value, equal to the
(byte) distance between bursts in a physically mapped main memory. (However, this value can be zero to
handle the case of packed, linear data where last pixel of a block row is packed in the same main memory
word as first pixel of next row:  this memory word is then accessed at least twice, once per scanline.)
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A single kernel call initiates the stride block DMA, which is decomposed by the write buffer into a GIO burst
per scanline. Each of these scanline DMA’s have identical BC value, but SB may vary per scanline and is
calculated incrementally by the write buffer. (For example, say first SB is SB(0), calculated as Start_Ad-
dress%8;  then subsequent SB is calculated as SB(i) = {SB (i-1) + BC + Stride}%8, for 64b DMA).

All DMA’s can be pre-empted and resumed, with the restriction that during the preemption period of a read
DMA, no other access is made to the subsystem of REX3 pertaining to the pre-empted DMA.  In short, REX3
contains two main subsystems: one for graphics, the other for the display control bus. DMA with the graph-
ics subsection can be pre-empted by host in order to perform accesses across the display control bus, but
not to the graphics. The converse is also true. In any event, no other DMA may be performed with REX3
during a read DMA preemption.  In addition, rev. 0 and rev. 1 REX3 chips do not allow the reading of pixels
(from HOSTRW) when a read DMA from DCBDATA is preempted.  Similarly, rev. 0 and rev. 1 REX3 chips
do not allow display control bus data (from DCBDATA) to be read while a read DMA from HOSTRW is pre-
empted.  Access to the STATUS, CONFIG, and DCBRESET registers are a third category, or subsection,
for which this rule applies. Therefore, STATUS may be read by host during any DMA preemption.

Notes:  Unlike REX1, the REX3 supports nonuniform SB for block DMA:  therefore the logic will subtract the
number of pixels represented by SB from XSTART at start of each burst. (Programmers note:  you will not
have to subtract SB from XSTART, which you did for REX1.)

Table 0.2.2.2.  HOSTRW pixel packing modes, (big endian format illustrated).

RWDOUBLE RWPACKED RWDEPTH(1:0) Host Pixel Packing
GIO_DATA(63:0)

0 0 00
0 0 01
0 0 10
0 0 11
0 1 00
0 1 01
0 1 10
0 1 11
1 0 00
1 0 01
1 0 10
1 0 11
1 1 00
1 1 01
1 1 10
1 1 11
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The following table summarizes the above cases:

(note 1:  STOPONX,STOPONY are from DRAWMODE0 register;  PREFETCH is from DRAWMODE1.)

(note 2:  above is for 64b GIO transfers;  for 32b case, SB 0-7 is then 0-3;  length%8 is then length%4.)

(note 3:  when a span crosses a page boundary, an additional burst is done;  BC is decomposed per burst.)

3.11 FIFO Management

A bus timeout counter (CONFIG register TIMEOUT field) is provided (1-4.3 usec) to generate  a
FIFO_INT_N interrupt during continuous GRXDLY stalling for host I/O; graphics FIFO is enlarged to 32

Table 24: Summary of PIO and DMA Cases

Case
Context

Switchable
Bursts PREFETCH SB BC STOPONX,Y

PIO Write yes -- -- 0/4 8/4 0,0

PIO Read yes -- yes 0/4 8/4 0,0

Linear
DMA
Span
Write

yes single -- 0-7 length 0,0

Linear
DMA
Span
Read

no single no 0-7 length 1,0

Linear
DMA
Block
Write

yes single -- 0 length

(length%8
=0)

0,0

Linear
DMA
Block
Read

no single no 0 length

(length%8
=0)

1,1

Stride
DMA
Block
Write

yes per row -- 0-7

per  row

width 0,0

Stride
DMA
Block
Read

no per row no 0-7

per row

width 1,0
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deep, doubles. (note:  GRXDLY is asserted whenever FIFO level meets or exceeds CONFIG GFIFODEPTH
and CONFIG GFIFABOVEINT is set; at timeout, this FIFOMAX GRXDLY stall is disabled, while
FIFO_INT_N remains asserted until the FIFO drains below the GFIFODEPTH level or GFIFOABOVEINT is
cleared, enabling a “below level” interrupt). DMA uses this mechanism also, though it should never result in
a timeout because the FIFO drain rate is sufficient to reset the timer-counter frequently.

In the event that the FIFOMAX level is set too high so that FIFO overflow would occur, the following would
happen:  first, the FIFO would not push overflow data;  second, this data would then be lost;  third, this is
ensured by the h/w disallowing push when (fifolevel=32 & !pop). Occurrence of this condition, for system
prototyping and debug, will be visible via assertion of GRXDLY during any “overflow push” clocks. Logic an-
alyzer trigger on (FIFO_INT_N & GRXDLY) will capture it;  should never trigger in a correctly configured/
operating system.

Host should check STATUS or USER_STATUS  for graphics idle (GFXBUSY=0) and GFIFO empty
(GFIFOLEVEL = 0x00) before beginning a read or a series of reads, to avoid bus timeout.  User programs
should check USER_STATUS so that interrupt information contained in the STATUS register is not cleared.
Additionally, there are several cases which yield worst-case latency for framebuffer reads which the system
should accomodate without generating a bus timeout: (a) any PIO read may be delayed by VRAM transfer
and refresh cycles;  this latency increases for slower video rate and interlaced display;  (b) maximum mem-
ory cycles required for a read is for a double-word of packed 8b or 4b data, unaligned in VRAM;  (c) the
transition between block rows is stalled by the graphics pipeline so that current scanline is finished through
the read packer before the next scanline read is initiated (this is to accomodate the Y swizzle in memory).
The combined effect of all these cases will yield a worst-case latency for reads which the system must ac-
cept. (**we should have numbers for this before tapeout!**).

3.12 Context Switching

REX3 supports context switching except for during preempted read dma. There are two main contexts
which may be switched: graphics context, and display bus context.   Graphics context includes the X,Y val-
ues, colors, and all other modifiers or modes which affect writing into, or reading from, the framebuffer.  Dis-
play bus controller context, by definition, includes those registers specifying target device, interface protocol
and timing, and data registers used for display bus transactions.  Before any context switching can take
place, the host must poll the STATUS register and wait for the appropriate BUSY bit to be cleared (GFX-
BUSY for graphics, BACKBUSY for display bus backend).  At such time, the context registers are consid-
ered to be stable.

A complete graphics context save is performed by first checking for GFXBUSY=0 and GFIFOLEVEL = 0x00,
then reading all registers except display control bus registers.   Only those registers which have a read for-
mat listed need be saved.  In many cases, however, it is likely that only a subset of these registers need be
saved;  it is up to the application to decide this.  The read of the HOSTRW or any other register must not be
issued with a “GO” (address+800H) command.

A complete graphics context restore is done by  writing back all the registers which were saved. There is
one complication the host must handle during context save/restore of the SLOPERED register:  the saved
value must be converted from a 2’s complement (s12.11) to a signed magnitude  (s(8)12.11) format before
writing back to REX3.  Restoral of COLORRED must be done with DRAWMODE bit RGBMODE=1 in order
to circumvent the 12b CI formatting process.  Also note that XSAVE should be restored after XSTART.  The
write to the HOSTRW or any other register must not be issued with a “GO” (address+800H) command.  The
restored process may be started immediately.

Display bus context switching is done simply by reading or writing the appropriate registers, after waiting for
BACKBUSY=0.  If non-atomic transfers are performed to or from the devices on the display bus, their con-
text will also need to be saved/restored;  however, this should no longer be necessary, now that REX3 sup-
ports packing and unpacking of multiple-byte data onto the bus.
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3.13 Display Control Bus

  The host communicates with devices on the Display Control Bus (DCB) by first writing to the DCBMODE
register, and then writing to or reading from the DCBDATA register.  Data written to both the DCBMODE and
DCBDATA registers pass through the BFIFO (backend fifo) prior to their being used by the DCB state
machine or transferred on the DCB.  The DCB state machine will empty the BFIFO prior to starting a read
operation on the DCB.
  Slave device selection is made by the DCBADDR(3 downto 0) field of the DCBMODE register.  No physical
device attached to the DCB will ever be allowed to respond to the reserved DCBADDR = X”F”.  DCBADDR
decoding for the Newport Graphics subsystem is as follows:

  The register to be accessed within the device selected by DCBADDR is determined by the DCBMODE
DCBCRS(2 downto 0) field.  If the DCBMODE ENCRSINC bit  is set, then DCBCRS will increment following
the transfer of each byte on the DCB.

  The protocol used to transfer data on the DCB is described by the ENASYNCACK and ENSYNCACK fields
in DCBMODE.

  If ENASYNCACK is set, an asynchronous handshake protocol will be used to transfer data across the
DCB.  The asynchronous handshake protocol runs as follows:  The REX3 will assert DCB_CS_N when it is
presenting valid data (for write cycles) or ready to accept data (for read cycles).  The slave device asserts
DCB_ACK_N when it has accepted data (write cycles) or is returning the requested data (read cycles).
When the REX3 detects that DCB_ACK_N, synchronized to the 33 MHz. GIOCLK, has been asserted, it
will de-assert DCB_CS_N.  The slave device will signal then de-assert DCB_ACK_N.  The REX3 will not
begin another transfer on the bus until a synchronized de-asserted DCB_ACK_N has been detected.  Data
can be transferred at a peak rate of 1 byte/ 4 cycles.

  If ENSYNCACK is set, a synchronous handshake protocol will be used to transfer data across the DCB.
When the REX3 is presenting valid data (write cycles), or is ready to accept data (read cycles), it will assert
DCB_CS_N.  When the slave device is accepting the data, or is returning the requested data, it will assert
DCB_ACK_N in the current GIOCLK cycle.  This protocol will allow the transfer of data at a peak rate of
1 byte/cycle.

DCBADDR Device
0000 VC2

0001
CMAP0 and

CMAP1
(write only)

0010 CMAP0
0011 CMAP1

0100
XMAP0 and

XMAP1
(write only)

0101 XMAP0
0110 XMAP1
0111 RAMDAC
1000 Video CC1
1001 Video AB1
1010

to
1110

undefined

1111 reserved

Table 25: Newport Graphics DCBADDR Decoding
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  If neither ENASYNCACK nor ENSYNCACK is set, then data will be transferred at a rate determined solely
by the DCBMODE cycle timing parameters CSSETUP(4 downto 0), CSWIDTH(4 downto 0), and
CSHOLD(4 downto 0).  DCB_RW_N, DCB_ADDR, DCB_CRS, and (for write cycles) DCB_DATA will be
valid for CSSETUP cycles prior to asserting DCB_CS_N.  DCB_CS_N will then be asserted for
(CSWIDTH + 1) cycles.  DCB_CS_N will then be de-asserted for CSHOLD cycles prior to changing any of
the DCB control signals.  For read transfers, data will be sampled by the REX3 at the end of last cycle in
which DCB_CS_N is asserted.

  The DATAWIDTH (1 downto 0) field describes the number of bytes to transfer from each word written to or
read from DCBDATA0 or DCBDATA1  when ENDATAPACK is cleared.  It is used to simplify the transfer
across the GIO64 bus of 3-byte (RGB triplet) quantities packed into words.  When ENDATAPACK is set, all
bytes written to or read from DCBDATA will be transferred across the DCB

  The SWAPENDIAN bit, in conjunction with the DATAWIDTH field, is used to support the OpenGL
SWAP_ENDIAN pixel packing attribute.  When set, the ordering of bytes within short and long width data is
reversed.

  Once the DCBMODE register has been written to, subsequent reads to and writes from the DCBDATA
register will result in data transfers on the DCB, using the specified timing and protocol.

3.14 Chip Reset and Initialization

 Following reset, the REX3 assumes that it is attached to GIO64 bus that is physically 32 bits wide, and that
the registered transceivers that isolate the pipelined GIO64 bus from the non-pipelined GIO64 bus are phys-
ically present.  If the registered transceivers are not present (as in the Sapphire system), the host must clear
the EXTREGXCVR bit in the CONFIG register prior to performing any reads from REX3 registers.  If the
REX3 is attached to a GIO64 bus which is physically 64 bits wide, the BUSWIDTH bit in the CONFIG reg-
ister should also be set at this time.  If the REX3 is installed in a system with a GIO32 bus master, the
GIO32MODE bit in the CONFIG register must be set.
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4 System Interface

4.1 GIO64 Bus Interface

The REX3 is a pipelined GIO64 slave device.  The REX3 does not check or generate parity, so the GIO64
bus parity signals, P_ADP(7 downto 0) and P_VLD_PARITY_N, are ignored.  Only the two least significant
SLOT_NUMBER pins from the GIO64 bus are brought into the REX3 for address comparison.  The two
most significant SLOT_NUMBER pins are assumed to be B”11”.  This implies that the base address of the
REX3 and associated Newport Graphics subsystem is at X”1F000000”, X”1F400000”, X”1F800000”, or
X”1FC00000”.  Consequently, REX3/Newport Graphics subsystems may only be placed in GIO64 slots C,
D, E or F.  Multiple head operation (up to four displays) is achieved by populating slots C, D, E, and F with
REX3/Newport Graphics subsystems.

Two interrupts are returned from the Newport Graphics subsystem by REX3.  VV_INT_N is the sum of
the VERT_INT_N (vertical retrace) signal (from the VC2), and the VIDEO_INT_N signal (from the Express
Video Option).  The REX3 will latch the occurrence of a falling edge on the VERT_INT_N input and assert
the VV_INT_N interrupt.  A ’low’ level on the VIDEO_INT_N input will also result in VV_INT_N being
asserted.  The host determines the source of VV_INT_N by reading the STATUS register.  When the
STATUS register is read, VRINT, the latch associated with VERT_INT_N, is cleared, removing that contri-
bution to VV_INT_N.  User code which is not willing to service VERT_INT_N interrupts should read the
USER_STATUS register, which does not clear the VRINT latch.

FIFO_INT_N  is generated whenever the number of entries in either the graphics fifo (GFIFO) or the dis-
play control bus fifo (BFIFO) has exceeded a programmed level for a programmed amount of time, or when
the number of entries in either the GFIFO or BFIFO has fallen below a programmed level.  REX3 fifo inter-
rupt behavior is therefore determined bythe CONFIG register BFIFODEPTH, GFIFODEPTH, BFIFO-
ABOVEINT, GFIFOABOVEINT, and TIMEOUT fields.  Whenever a ’fifo above’ interrupt is generated, this
occurrence is latched in either the STATUS register BFIFO_INT or GFIFO_INT field.  Reading the STATUS
register will reset these bits, but FIFO_INT_N will remain asserted as long as the interrupting condition
exists.  The latching ’fifo above’ status is intended to provide the host with a means of identifying the source
of spurious interrupts.  User code should only read status from USER_STATUS, to prevent the uncontrolled
clearing of the BFIFOABOVEINT, GFIFOABOVEINT, and VRINT interrupt status bits.

The REX3 will operate as a pipelined GIO64 slave with or without the presence of external registered
transceivers.  The REX3 assumes that the external registered transceivers that define the pipelined GIO64
bus are present.  The absence of the external registered transceivers is communicated to the REX3 by pro-
gramming CONFIG register EXTREGXCVR bit to B”0”.  When REX3 is installed in a system without external
registered transceivers, this bit must be programmed to B”1” prior to any read operation.

The REX3 will respond to both 64-bit and 32-bit wide GIO64 bus masters, as determined by the
P_GSIZE64 signal.  The REX3 will operate with a GIO64 bus that is physically either 64 bits wide or 32 bits
wide, as determined by the CONFIG register BUSWIDTH bit.

The REX3 will follow the GIO32 bus protocol when the CONFIG register GIO32MODE bit is set.  In this
mode, data transferred during the GIO bus byte count cycle will be interpreted according to GIO32 protocol
convention.

The REX3 supports both little-endian and big-endian addressing conventions in GIO64 mode.
Please consult the GIO64 Bus Specification, and the Graphics IO (GIO) Bus Specification for precise

descriptions of the GIO64 and GIO32 protocols.

4.2 Display Control Bus Interface

The Display Control Bus (DCB) is an 8-bit, 33 MHz bus controlled by the REX3, interfacing the REX3 to
the XMAP5s, VC2, CMAPs, RAMDAC, and Video Option in the Newport Graphics subsystem.  In addition
to the 8 bidirectional data lines (DCB_DATA(7 downto 0)), the bus includes 4 device address lines
(DCB_ADDR(3 downto 0)), driven by the REX3, which are externally decoded to produce 15 device chip
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select signals.  The bus also includes 3 command/register select lines (DCB_CRS(2 downto 0)), allowing
eight registers to be accessed within each device.  A data transfer direction line (DCB_RW_N), a command
strobe line (DCB_CS_N), and an acknowledge signal (DCB_ACK_N) complete the set of bus signals.

All signals on the DCB sourced by the REX3 (DCB_DATA, DCB_ADDR, DCB_CRS, DCB_RW_N, and
DCB_CS_N) change on the rising edge of the 33 MHz GIO_CLK.  All inputs (DCB_DATA and DCB_ACK_N)
are sampled with the rising edge of GIO_CLK.

DCB_ADDR(3 downto 0) = X”F” is reserved as a null-device chip select.  No physical device is allowed
to respond to transactions to this reserved address.

The DCB supports different slave device timing requirements, synchronous and asynchronous opera-
tion, and data transfer protocols with or without acknowledgement.  These different modes of operation are
programmed through fields in the DCBMODE register.

Driver conflict and bus contention are avoided by having the REX3 insert at least two idle cycles
(DCB_DATA tri-stated, DCB_CS_N = B”1”, DCB_ADDR = X”F”) between transactions of different directions
(read followed by write, or write followed by read), and between transactions to or from different slave
devices.  As the DCB_ACK_N signal may be shared by multiple deveics, a slave device must return this
signal to the inactive (”1”) state prior to tri-stating its driver.

Please consult the Display Control Bus Specification for precise descriptions and definitions of the
Display Control Bus protocol.



4.3 VRAM Interface

The memory controller runs at 66MHz. and is made of 5 state machines. Following are the four state
machines and their respective functions:

1. CONTROL MODULE       Controls the other state machines
2. TR_FSM Performs screen refresh and memory refresh
3. LD_REG_FSM Loads write mask and color regs. in RB2 and Vrams respectively
4. WRITE_FSM Performs write only operations to Vram (including block writes)
5. RMW_FSM Performs read, read modify write and read/read modify write

cycles.

The WRITE_FSM and RMW_FSM state machines keep the Vrams in page mode unless a page miss or a
request to transfer to another state machine is requested. LD_REG_FSM is invoked when the host reads
the chip is not busy and wants to load a new write mask or new color register value in the Vrams.

When a screen refresh request is made, the state machines make sure there are no pixels in the data pipe
before honoring the request. The memory controller in all four banks operate independently from each other.

A page mode cycle takes 4 (66MHz) clocks. A full ras cycle is 11 clocks.

Various timing for the frame buffer is shown in the next few pages.



S
IL

IC
O

N
 G

R
A

P
H

IC
S

 P
R

O
P

R
IE

TA
R

Y
 an

d
 C

O
N

F
ID

E
N

T
IA

L

8/13/93
C

reated:4/24/92      M
odified: A

ugust 13, 1993 4:22 pm
 page87

CLK15

RAS_N

CAS_N

REX3DATA

RB2SEL

RD_FIFO_N

FA(8:0)

WB/WE

DT/OE

DSF1

FB_DATA

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0
1
0

  XX          XX         XX          XX         XX        XX            R0          G0          B0      A0             R1          G1          B1             A1         R2          G2          B2          A2        R3           G3

 0              0             0           0            0              0            1(2)         0              0           0            1(2)          0             0             0           1(2)            0            0            0         1(2)            0          0   0            0             0

                 RGBn-2 WRITE MASK DATA                                RGB0                                               RGB1

FRAME BUFFER PAGE MODE WRITES 8 OR  24 BITS  (4 components)   PIXEL PLANES ONLY

                    CAn-2                                                                     CAn-1                                                                  RA                                                                   CA0                                                      CA1

Rn-1        Gn-1      Bn-1      An-1

RGBn-1

K             L            H            J              K           L              H            J             K             A            B            C            D            E           F             G            H             J             K          L            H             J              K              L

GO_DATA 1
0

Z Z Z Z
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CLK15

RAS_N

CAS_N

REX3DATA

RB2SEL

RD_FIFO_N

FA(8:0)

WB/WE

DT/OE

DSF1

FB_DATA

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0
1
0

  XX          XX         XX          R0          G0          B0         A0         XX         XX         XX          XX          XX           XX         R1           G1           B1            A1          XX          XX          XX

 0              0             0          1(2)         0              0           0               0          0             0             0             0            0           1(2)            0            0            0              0             0          0   0            0             0

FRAME BUFFER PAGE MODE WRITES 8 OR  24 BITS  (4 components)   PIXEL PLANES ONLY

XX            XX         XX         XX

F_FE_N
1
0

IDLE      IDLE      IDLE        IDLE      IDLE      IDLE       A             B             C            D           E              F           G            H             J             K            A              B            C            D           E            F             G          H

XX RA1 CA1 RA2 CA2

WRITE MASK DATA WRITE RGB0 Z WRITE MASK  DATA WRITE RGB1

STARTING WITH NO PIXELS IN THE PIPE + CONSECUTIVE PAGE MISSES

GO_DATA_N
1
0

WRITE_FSM
1
0
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CLK15

RAS_N

CAS_N

REX3DATA

RB2SEL

RD_FIFO_N

FA(8:0)

WB/WE

DT/OE

DSF1

FB_DATA

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0
1
0

              An-2       Rn-1        Gn-1       Bn-1     An-1          Z            XX *       XX *       XX *       XX *         Z        R0          G0          B0          A0

 4(5)           0            0            0            0            0             0             0           0              0            4(5)            0            0            0         4(5)           0          0  0             0           0             4(5)             0             0          0

     Z                   RGBn-2                           Z                   RGBn-1                                            Z                     RGB0                       Z                        RGB1

FRAME BUFFER PAGE MODE READS 8 OR  24 BITS     ANY PLANES

                    CAn-2                                                           CAn-1                                                                                   RA                                                       CA0                                                      CA1

  Bn-4      An-4      Rn-3        Gn-3       Bn-3      An-3       Rn-2       Gn-2      Bn-2

Z WRITE MASK DATA

K             L            H            J              K           L              H            J             K             A            B            C            D            E           F             G            H             J             K          L            H             J              K              L

RGBn-4                                               RGBn-3                                             RGBn-2                                           RGBn-1M_RD_DATA
_(0:1)_(23:0)

1
0

M_WR_FIFO
_(0:1)

1
0

* Dirven by REX3

XX XX XX XX XX XX XX XX
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CLK15

RAS_N

CAS_N

REX3DATA

RB2SEL

RD_FIFO_N

FA(8:0)

WB/WE

DT/OE

DSF1

FB_DATA

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0
1
0

              XX            XX         XX         XX         XX           Z           R0 *         G0 *        B0 *        A0 *       Z             XX           XX          XX          XX

0                0            0            0            0           4(5)          0             0           0              0            0            0               0            0            0          4(5)           0  0             0           0             0             0             0          0

FRAME BUFFER  READS 8 OR  24 BITS     ANY PLANES

  XX           XX           XX         XX         XX          XX          XX          XX          XX

M_RD_DATA
_(0:1)_(23:0)

1
0

M_WR_FIFO
_(0:1)

1
0

* Dirven by RB2

IDLE        IDLE        IDLE       IDLE        A            B            C            D              E           F              G          H            J             K            A             B            C            D           E             F            G              H           J            K

XX RGBA0 XX

XX RA0 CA0 RA1 CA1

RMW_FSM
1
0

STARTING WITH NO PIXELS IN THE PIPE  AND CONSECUTIVE PAGE MISSES

Z RGBA0 Z RGBA1
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CLK15

RAS_N

CAS_N

REX3DATA

RB2SEL

RD_FIFO_N

FA(8:0)

WB/WE

DT/OE

DSF1

FB_DATA

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0
1
0

  XX        XX       XX           Z          R0           G0           B0          A0           Z            XX          XX       R0’          G0’         B0’           A0’          XX

 0            0         4(5,6,7)        0             0             0            0              0           0             0             0           1(2)           0            0            0            0            0 0             0           0              0            0             0             0

FRAME BUFFER READ MODIFY WRITE 8 AND 24 BITS

  XX           XX          XX         XX          XX          XX           XX         XX

||

||

||

||

||

||

||

||

CAn-1 RA CA0

                 A             B            C             D           E           F              G           H           J             K            L             R            S            T             U             V            W           Y           AA         AB            AC        AD        AE

CA0

CONTINUED ON NEXT PAGE.

XX    WRITE MASK Z     READ RGB0 Z Z

Non cid chkd blend in pixel planes
Non cid chkd ccomp in any planes
Cid chkd writes in pixel planes

PIXEL OPS.

Non cid chkd writes in aux planes

AUX Planes = cid or pup or olay

GO_DATA 1
0

IF BLENDING
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CLK15

RAS_N

CAS_N

REX3DATA

RB2SEL

RD_FIFO_N

FA(8:0)

WB/WE

DT/OE

DSF1

FB_DATA

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0
1
0

        Z           R1            G1          B1              A1         Z           XX       XX        R1’         G1’          B1’           A1’           XX         XX          XX         XX

 0            0             0            0              0            0               0          0          1(2)          0             0             0           0             0            0             0               0 0             0           0              0            0             0        4(5,6,7)

PAGE MODE   READ MODIFY WRITE 8 AND 24 BITS.

  XX          XX           XX        XX            XX         XX         XX          XX
||

||

||

||

||

||

||

CA0’ CA1 CA1

     WRITE RGB 0 Z        READ RGB1 (OR CID) Z

AE          AF          AG         AH           AJ          H             J            K             L             R           S             T             U            V           W            Y          AA          AB          AC         AD          AE         AF           AG         AH

WRITE RGB1’XX Z

(CONTINUED)

Non cid chkd blend in pixel planes
Non cid chkd ccomp in any planes
Cid chkd writes in pixel planes

PIXEL OPS.

Non cid chkd writes in aux planes
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CLK15

RAS_N

CAS_N

REX3DATA

RB2SEL

RD_FIFO_N

FA(8:0)

WB/WE

DT/OE

DSF1

FB_DATA

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0
1
0

  XX        XX       XX           Z          R0 /R1     G0/G1    B0/B1     A0/A1         Z            XX          XX       R0’          G0’         B0’         A0’          R1’

 0            0             4            0             0             0            0              0           0             0             0          1(2)           0            0            0          2(1)            0 0             0           0              0            0             0             0

FRAME BUFFER READ MODIFY WRITE 8 AND 24 BITS. WITH VALID PIXELS IN BOTH SUBBANKS TO BE BLENDED

  XX           XX          XX         XX          XX          XX           XX         XX

||

||

||

||

||

||

||

||

CAn-1 RA CA0

                 A             B            C             D           E           F              G           H           J             K            L             R            S            T             U             V            W           Y           AA         AB            AC        AD        AE

CA0

CONTINUED ON NEXT PAGE.

XX    WRITE MASK Z     READ RGB0/RGB1 Z Z

Non cid chkd blend in pixel planes

PIXEL OPS.

GO_DATA 1
0

IF BLENDING
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CLK15

RAS_N

CAS_N

REX3DATA

RB2SEL

RD_FIFO_N

FA(8:0)

WB/WE

DT/OE

DSF1

FB_DATA

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0
1
0

        XX          XX         XX          XX           Z         R2/R3     G2/G3     B2/B3     A2/A3       Z             XX        XX      R2’            G2’          B2’        A2’

 0            0             0            4              0            0               0          0             0           0             0             0            1(2)             0            0             0        2(1) 0             0           0              0            0             0             0

PAGE MODE   READ MODIFY WRITE 8 AND 24 BITS. WITH VALID PIXELS IN BOTH SUBBANKS TO BE BLENDED.

  R1’           G1’           B1’         A1’         XX         XX         XX        XX

||

||

||

||

||

||

CA0

AE          AF          AG         AH           AJ          AK         AL          AM         AN        H           J             K               L             R           S             T             U            V           W            Y          AA          AB          AC         AD

(CONTINUED)

Non cid chkd blend in pixel planes

PIXEL OPS.

CA1

Z WRITE RGB0/RGB1 Z READ RGB2/RGB3 Z

GO_DATA 1
0

Z RGB0
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CLK15

RAS_N

CAS_N

REX3DATA

RB2SEL

RD_FIFO_N

FA(8:0)

WB/WE

DT/OE

DSF1

FB_DATA

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0
1
0

        XX          XX          XX         XX          XX           Z         R4/R5     G4/G5     B4/B5     A4/A5       Z               XX         XX    R4’            G4’          B4’        A2’

 0            0             0            0              4            0               0          0             0           0             0             0           0              1(2)            0             0               02(1)             0           0              0            0             0             0

PAGE MODE   READ MODIFY WRITE 8 AND 24 BITS. WITH VALID PIXELS IN BOTH SUBBANKS TO BE BLENDED.

  A2’         R3’           G3’         B3’         A3’         XX         XX         XX
||

||

||

||

||

||

||

CA1

AD           AE          AF          AG         AH           AJ          AK         AL          AM         AN        H           J             K               L             R           S             T             U            V           W            Y          AA          AB          AC

(CONTINUED)

Non cid chkd blend in pixel planes

PIXEL OPS.

CA2

Z WRITE RGB2/RGB3 Z READ RGB4/RGB5 Z

GO_DATA 1
0

Z RGB2
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CLK15

RAS_N

CAS_N

REX3DATA

RB2SEL

RD_FIFO_N

FA(8:0)

WB/WE

DT/OE

DSF1

FB_DATA

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0
1
0

  R0           G0           B0          A0         XX         XX          XX        XX            XX        R1          G1          B1          A1           XX          XX         XX            XX

  1(2)         4(5)            0             0            0            0              0        0             0           1(2)          4(5)          0            0             0             0             0          0           0 0             0           0              0            0             0

FRAME BUFFER READ MODIFY WRITE  8 OR 24 BITS (NON CID CHK LOGIC-OP PIX WRITE)   FAST_X

  XX           XX          XX         XX          XX          XX           XX

CAn-1 RA

  U            A             B            C             D           E           F              G           H           J             K            L             R            S            T             U             V             H            J            K            L             R             S           T

                                          CA0

   WRITE MASK Z     READ RGB0      Z            WRITE RGB0’              Z           READ RGB1

CA1

                       ZZ                              WRITE RGB1’

LOGIC OP ONLY IN ANY PLANES
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CLK15

RAS_N

CAS_N

REX3DATA

RB2SEL

RD_FIFO_N

FA(8:0)

WB/WE

DT/OE

DSF1

FB_DATA

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0
1
0

  XX        XX         XX          XX         XX          XX           Z         CID *       XX *       XX *      XX *        R1  *        G1 *         B1 *        A1 *           Z

 0            0             0              0            0           6(7)            0            0              0         4(5)         0             0            0             0            0               0            0 0             0           0              0            0             0             0

  XX          XX           XX          XX         XX         XX          XX         XX

CAn-1 RA CA0 (CID) CA0 (CID OR PIXEL) CA0 (CID OR PIXEL)

AE           AF           AG         AH         A              B           C             D             E            F             G           H            J             K           L             M            N            P             Q          R            S             T            U           V

WRITE RGBn-1     WRITE MASK      READ CID0 Z   READ PIXEL0 Z

READ / READ MODIFY WRITE CYCLE

CONTINUED ON NEXT PAGE

Z Z Z

PIXEL OPS

Cid chkd ccomp/logicop writes in any planes
Cid chkd blend in pixel planes

* Driven by RB2
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CLK15

RAS_N

CAS_N

REX3DATA

RB2SEL

RD_FIFO_N

FA(8:0)

WB/WE

DT/OE

DSF1

FB_DATA

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0
1
0

V           W           Y            AA          AB         AC          AD          AE        AF          AG         AH          AJ            H              J            K           L            M             N           P            Q             R            S            T            U

  XX        XX         XX          XX         XX          XX          XX          Z         CID *       XX *      XX  *       XX *        R1  *        G1  *        B1  *      A1  *

 0            0             0              0            0           0             6(7)            0            0              0         4(5)         0             0            0             0            0              0 0             0            1(2)          0            0             0             0

    Z           XX         XX          R1          G1          B1          A1         XX

||

||

||

||

||

||

||

Z WRITE PIXEL 0 Z    READ CID 1 Z READ PIXEL 1 Z

CA0 (CID OR PIXEL) CA1 (CID) CA1 (CID OR PIXEL) CA1 (CID OR PIXEL)

READ / READ MODIFY WRITE CYCLE

(CONTINUED)

PIXEL OPS

Cid chkd ccomp/logicop writes in any planes
Cid chkd blend in pixel planes

* Driven by RB2
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CLK15

RAS_N

CAS_N

REX3DATA

RB2SEL

RD_FIFO_N

FA(8:0)

WB/WE

DT/OE

DSF1

FB_DATA

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0
1
0

  XX          XX         XX     CMSK3  CMSK2   CMSK1     XX       CMSK3  CMSK2   CMSK1      XX     CMSK3  CMSK2   CMSK1     XX       CMSK3

 0              0            0              1           0              0           0             1             0            0              0            1            0             0           0              1             0 0              0               0          0             0            0             0

                 CMSKn-2 WRITE MASK DATA                           CMSK0                                               RGB1

BLOCK MODE WRITE

                    CAn-2(8 : 2)                                                                     CAn-1(8 : 2)                                                  RA                                                               CA0                                                      CA1

                 XXCMSK3  CMSK2  CMSK1       XX          XX         XX           XX          XX

CMSKn-1

K             L            H            J              K           L              H            J             K             A            B            C            D            E           F             G            H             J             K          L            H             J              K              L

Z Z Z
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CLK15

RAS_N

CAS_N

REX3DATA

RB2SEL

RD_FIFO_N

FA(8:0)

WB/WE

DT/OE

DSF1

FB_DATA

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0
1
0

                             XX

                                                             0             3            0           0           0              0

LOAD WRITE MASK OPERATION.

CA -1 XX

LD WMSK COMMAND

  XX          XX          ***           **                *XX Z

A             B              C            D          E              F           GIDLE

SUB BANK0                              SUB BANK1

*                   WMSK3(23:16)                         XX

**                  WMSK2(15:8)                          XXX, FASTCLEAR, RGBMODE, DBLSRC, PLANES(2)

***                WMSK1(7:0)                            PLANES(1:0),  DRAWDEPTH(1:0), LOGICOP(3:0)

WRITE MASK
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CLK15

RAS_N

CAS_N

REX3DATA

RB2SEL

RD_FIFO_N

FA(8:0)

WB/WE

DT/OE

DSF1

FB_DATA

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0
1
0

            COL0        XX         XX         XX          XX            XX          XX

  0            0               0             0            0            0              0             0 0             0           0             0              0             1

LOAD COLOR REGISTER.

                                              XX           XX         XX        COL2

CA -1 XX

Z

COL1

     COLOR DATA

XX

LOAD COLOR REG COMMAND

0

A            B              C              D            E             F         G           H             J               K            L         MIDLE

WRITE MASKZXX Z
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CLK15

RAS_N

CAS_N

REX3DATA

RB2SEL

RD_FIFO_N

FA(8:0)

WB/WE

DT/OE

DSF1

FB_DATA

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0
1
0

              XX            XX       XX         XX          XX            XX          XX

 0             0             0            0             0            0            0              0             0 2             1           0             3            2             1             0

READ TRANSFER CYCLE

                                              XX           A           B             C           Z

CA -1

XX

 LINE ADDRESS (N, N+4)                        COLUMN TAP (0x000, 0x100)

A            B            C             D             E           F           G             H           J             K              L          B             C             D            E             F            G          H              J            K         LIDLE

WRITE MASKXX XX
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CLK15

RAS_N

CAS_N

REX3DATA

RB2SEL

RD_FIFO_N

FA(8:0)

WB/WE

DT/OE

DSF1

FB_DATA

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0
1
0

              XX            XX       XX         XX          XX            XX          XX

 0           0              0            0             0            0            0              0             0 0             0           0             0            0             0             0

CBRR    CYCLE

                                              XX           XX          XX          XX         XX

COLUMN TAP XX

XX

XX

G              H            J             K             L          B             C             D            E             F            G          H              J            K         L             B             C             D            E             F            G          H              J            K         L

   WRITE MASK XXXX
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4.4 Tester Interface

All bidirectional pins and all tri-stateable output pins are placed in their high impedance state when the TEI
pin is driven low.

The JTAG_TMS pin, when driven low, enables the scan chain mux input into each storage element.  When
TP(1:0) = “11”, the JTAG_TCK pin is selected as the clock input to all REX3 flip-flops.  JTAG_TDI is the scan
input into the first storage element of the scan chain.  Whenever TP(0) = “1”, the output of the last (4756th)
element in the scan chain is muxed onto the JTAG_TDO pin.  The first 229 elements in the scan chain are
the flip-flops which drive REX3 bidirectional and output pins, and their output enables. The first 229 ele-
ments in the scan chain are:

RO_Y_DISP_0
RO_Y_DISP_1
BANK A TRI-STATE OE_N (’0’ enables outputs for the next 34 pins)
RB2_DATA_A_0_0
RB2_DATA_A_0_1
RB2_DATA_A_0_2
RB2_DATA_A_0_3
RB2_DATA_A_0_4
RB2_DATA_A_0_5
RB2_DATA_A_0_6
RB2_DATA_A_0_7
VRAM_WBWE_N_A
VRAM_DTOE_N_A
VRAM_DSF1_A
RB2_SEL_A_0
RB2_SEL_A_1
RB2_SEL_A_2
VRAM_ADDR_A_0
VRAM_ADDR_A_1
VRAM_ADDR_A_2
VRAM_ADDR_A_3
VRAM_ADDR_A_4
VRAM_ADDR_A_5
VRAM_ADDR_A_6
VRAM_ADDR_A_7
VRAM_ADDR_A_8
VRAM_RAS_A
VRAM_CAS_A_0
VRAM_CAS_A_1
RB2_DATA_A_1_0
RB2_DATA_A_1_1
RB2_DATA_A_1_2
RB2_DATA_A_1_3
RB2_DATA_A_1_4
RB2_DATA_A_1_5
RB2_DATA_A_1_6
RB2_DATA_A_1_7
BANK B TRI-STATE OE_N (’0’ enables outputs for the next 34 pins)
RB2_DATA_B_0_0
RB2_DATA_B_0_1
RB2_DATA_B_0_2
RB2_DATA_B_0_3
RB2_DATA_B_0_4
RB2_DATA_B_0_5
RB2_DATA_B_0_6
RB2_DATA_B_0_7
VRAM_WBWE_N_B
VRAM_DTOE_N_B
VRAM_DSF1_B
RB2_SEL_B_0
RB2_SEL_B_1
RB2_SEL_B_2
VRAM_ADDR_B_0
VRAM_ADDR_B_1
VRAM_ADDR_B_2
VRAM_ADDR_B_3
VRAM_ADDR_B_4
VRAM_ADDR_B_5
VRAM_ADDR_B_6
VRAM_ADDR_B_7
VRAM_ADDR_B_8
VRAM_RAS_B
VRAM_CAS_B_0
VRAM_CAS_B_1
RB2_DATA_B_1_0
RB2_DATA_B_1_1
RB2_DATA_B_1_2
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RB2_DATA_B_1_3
RB2_DATA_B_1_4
RB2_DATA_B_1_5
RB2_DATA_B_1_6
RB2_DATA_B_1_7
BANK C TRI-STATE OE_N (’0’ enables outputs for the next 34 pins)
RB2_DATA_C_0_0
RB2_DATA_C_0_1
RB2_DATA_C_0_2
RB2_DATA_C_0_3
RB2_DATA_C_0_4
RB2_DATA_C_0_5
RB2_DATA_C_0_6
RB2_DATA_C_0_7
VRAM_WBWE_N_C
VRAM_DTOE_N_C
VRAM_DSF1_C
RB2_SEL_C_0
RB2_SEL_C_1
RB2_SEL_C_2
VRAM_ADDR_C_0
VRAM_ADDR_C_1
VRAM_ADDR_C_2
VRAM_ADDR_C_3
VRAM_ADDR_C_4
VRAM_ADDR_C_5
VRAM_ADDR_C_6
VRAM_ADDR_C_7
VRAM_ADDR_C_8
VRAM_RAS_C
VRAM_CAS_C_0
VRAM_CAS_C_1
RB2_DATA_C_1_0
RB2_DATA_C_1_1
RB2_DATA_C_1_2
RB2_DATA_C_1_3
RB2_DATA_C_1_4
RB2_DATA_C_1_5
RB2_DATA_C_1_6
RB2_DATA_C_1_7
BANK D TRI-STATE OE_N (’0’ enables outputs for the next 34 pins)
RB2_DATA_D_0_0
RB2_DATA_D_0_1
RB2_DATA_D_0_2
RB2_DATA_D_0_3
RB2_DATA_D_0_4
RB2_DATA_D_0_5
RB2_DATA_D_0_6
RB2_DATA_D_0_7
VRAM_WBWE_N_D
VRAM_DTOE_N_D
VRAM_DSF1_D
RB2_SEL_D_0
RB2_SEL_D_1
RB2_SEL_D_2
VRAM_ADDR_D_0
VRAM_ADDR_D_1
VRAM_ADDR_D_2
VRAM_ADDR_D_3
VRAM_ADDR_D_4
VRAM_ADDR_D_5
VRAM_ADDR_D_6
VRAM_ADDR_D_7
VRAM_ADDR_D_8
VRAM_RAS_D
VRAM_CAS_D_0
VRAM_CAS_D_1
RB2_DATA_D_1_0
RB2_DATA_D_1_1
RB2_DATA_D_1_2
RB2_DATA_D_1_3
RB2_DATA_D_1_4
RB2_DATA_D_1_5
RB2_DATA_D_1_6
RB2_DATA_D_1_7
DCB TRI-STATE OE_N (’0’ enables outputs for the next 17 pins)
DCB_DATA_0
DCB_DATA_1
DCB_DATA_2
DCB_DATA_3
DCB_DATA_4
DCB_DATA_5
DCB_DATA_6
DCB_DATA_7
DCB_CRS_0
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DCB_CRS_1
DCB_CRS_2
DCB_RW_N
DCB_CS_N
DCB_ADDR_0
DCB_ADDR_1
DCB_ADDR_2
DCB_ADDR_3
VR_INT_REG (if this bit is set, VV_INT_N will be asserted)
VIDEO_INT_D_REG (if this bit is set, VV_INT_N will be asserted)
FIFO_INT_N (if this bit is clear, FIFO_INT_N will be asserted)
GIO BUS TRI-STATE OE (’1’ enables outputs for the next 65 pins)
P_AD_0
P_AD_1
P_AD_2
P_AD_3
P_AD_4
P_AD_5
P_AD_6
P_AD_7
P_AD_8
P_AD_9
P_AD_10
P_AD_11
P_AD_12
P_AD_13
P_AD_14
P_AD_15
P_AD_16
P_AD_17
P_AD_18
P_AD_19
P_AD_20
P_AD_21
P_AD_22
P_AD_23
P_AD_24
P_AD_25
P_AD_26
P_AD_27
P_AD_28
P_AD_29
P_AD_30
P_AD_31
P_GRXDLY
P_AD_32
P_AD_33
P_AD_34
P_AD_35
P_AD_36
P_AD_37
P_AD_38
P_AD_39
P_AD_40
P_AD_41
P_AD_42
P_AD_43
P_AD_44
P_AD_45
P_AD_46
P_AD_47
P_AD_48
P_AD_49
P_AD_50
P_AD_51
P_AD_52
P_AD_53
P_AD_54
P_AD_55
P_AD_56
P_AD_57
P_AD_58
P_AD_59
P_AD_60
P_AD_61
P_AD_62
P_AD_63

When TP(1:0) = “10”, the parametric nand-tree/process monitor output is muxed onto JTAG_TDO.  All bidi-
rectional pins and all signal input pins (except for GIO64CLK, PLL_RESET_N, TP_0, and TP_1) are con-
nected to the paremetric nand tree.  VC_TX_REQ is the first pin in the nand tree, and the rest of the tree is
connected in increasing LSI pin number order.
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When TP(1:0) = “00”, the output of the VCO ripple counter is muxed onto JTAG_TDO, allowing testing of
PLL VCO.Three pins are dedicated for scan chain based testing of the internal logic. SCAN_EN enables
the scan chain mux input into each storage element. SCAN_IN feeds the first storage element in the scan
chain. SCAN_OUT, which brings the scan chain off chip. The on chip Phase Lock Loop requires 5 pins for
testing: PLL_TSTMD, which places the PLL into Test Mode, PLL_TCLK, the PLL test mode clock input,
PTREE_PLLTCKO, the PLL test mode clock output.
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5 Architectural Description

5.1 GIO64 Bus Interface

The REX3 is a slave device on the pipelined GIO64 bus.  The GIO64 bus interface is the functional block
of the REX3 that responds to data transfer requests from a GIO64 bus master. Commands and data are
sent to the graphics pipeline through the graphics fifo (GFIFO), commands and data to the graphics back-
end devices (VC2, XMAP, CMAP, RAMDAC, Video Option) are sent to the Display Control Bus Interface
through the backend fifo (BFIFO).  A block diagram of the GIO64 bus interface follows.

FIGURE 5. GIO64 Bus Interface Block Diagram

BFIFO

GIO64 Bus

Input/Output Registers

Address Byte Count

Data

Byte/Short/Word
SwapGIO CONTROL

GFIFO CONTROL GFIFO
78 bits x 32 words

DDA Section

BFIFO CONTROL
73 bits x 16 words

DCB Interface Section

Byte/Short/Word
Swap
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5.2 Display Control Bus Interface

The Display Control Bus Interface section of the REX3 unpacks DCBMODE and DCBDATA information
from the BFIFO, and uses this information to execute data transfers on the Display Control Bus (DCB).
When DCBMODE data is unpacked from the BFIFO, the operating mode (DCB protocol and timing, DCB
slave device address,  DCB slave register address) of the DCB state machine is defined.  Data written by
the host to the DCBDATA register is unpacked from the BFIFO, and sent out on the DCB by the DCB state
machine, using the defined DCBMODE.  When the host performs a read of the DCBDATA register, a DCB
read request is pushed onto the BFIFO by the GIO interface.  When the DCB read request is unpacked from
the BFIFO, the DCB state machine will execute the read data transfer cycles on the DCB, packing the data
it receives into the BFIFO.  The GIO interface will then transfer the requested data from the BFIFO back to
the host.  A block diagram of the Display Control Bus Interface follows:

FIGURE 6. Display Control Bus Interface Block Diagram

BFIFO Control BFIFO

Output Registers Input Registers

DCB State Machine

DCB_DATADCB_ADDR
(3 downto 0)

DCB_CS_N

(7 downto 0)

DCB_RW_N

DCB_CRS
(2 downto 0)

DCB_ACK_N
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5.3 DDA Unit

The DDA unit assembles the drawing context, by unloading commands and data from GFIFO, and executes
drawing primitives.  The main components of the DDA unit are the current drawing context registers, the 3-
stage shade and address generation pipelines, and the host pixel swizzle and pack logic.

The top-level VHDL block is named DDA_TOP.  Figure 7 shows the major functional blocks.

FIGURE 7.   DDA_TOP block diagram.

RFIFO(0:7)

RD_PACK

framebuffer

To GIO ReadRegister Mux

framebuffer read pixels

RD_SWIZZLE

To

X,Y address register control bitsFIFO_FULL

CONTEXT_CTL

color, slope

addresscontrol

GFIFO

D

SHADERS

ZLS_PATTERN

X_ALIGN

WR_SWIZZLE

ADR_SETUP

SMASK_ALIGN

Context Registers

END_CHECK

D_CTL
RGBA1RGBA0

data

line state smasks pattern

X,Y address

EE_CTL
RGBA1RGBA0X,Y address
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5.3.1 DDA_TOP Port List

Figure 8 shows the port diagram for DDA_TOP.  There are six functional interfaces:  (1) The GFIFO section
unloads GFIFO data and control into DDA_TOP next context;  (2) The VRAM BANK FIFO interface loads
the memory subsection BANKFIFOs with pixel address, data, and control bits;  (3) VRAM CTL routes control
bits from DDA_TOP non-pipelined registers to the memory controller;  (4) VRAM READ FIFO consists of
DDA_TOP RFIFO data input and handshake;  (5) READ DATA routes DDA_TOP packed GIO read data to
the GIO interface;  (6) The STATUS signals communicate idle status between blocks.  Table 26 outlines the
function of DDA_TOP ports.

FIGURE 8.   DDA_TOP port diagram.
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Signal Name Type Active Description
SRESET I H Global synchronous reset.
CLK_33MHZ I 33MHz chip clock (GIO clock).
GF_ADR(6:0) I GFIFO GIO address bits used for register decode:  GIO ADR(9:8,6:2).
GF_DATA(63:0) I GFIFO write data.
GF_READ I H GFIFO read/write flag.
GF_D32 I H GFIFO data width:  1=32-bit, 0=64-bit transfer, (from GIO BC/SB.)
GF_WDMAMODE I H GFIFO DMA mode enable.
GF_STARTBYTE(2:0) I GFIFO GIO bus START BYTE field.
GF_GO I H GFIFO GO bit, decoded from GIO address.
GF_EMPTY I H GFIFO empty flag.
DDA_GF_POP O H GFIFO read strobe.
WF_FULL_(A:D) I H Bank FIFO full flags.
DDA_WF_WR_(A:D) O H Bank FIFO write strobes.
DDA_WF_DAT_VAL_(A:D)(1:0) O H Bank FIFO individual pixel valid flags, two per bank.
DDA_WF_READ O H Bank FIFO read flag.
DDA_WF_W_X_(A:D)(1:0) O Bank FIFO window relative X address lsbs, for dithering.
DDA_WF_W_Y_(1:0) O Bank FIFO window relative Y address lsbs, for dithering.
DDA_WF_X(10:3) O Bank FIFO screen relative X address.
DDA_WF_Y(9:0) O Bank FIFO screen relative Y address.
DDA_WF_PIX_(A:D)(0:1)(31:0) O Bank FIFO RGBA pixel data (8-8-8-8).
DDA_WRMSK_COLORREG(23:0) O Muxed pixel writemask and VRAM color register data.
DDA_COLORREG_LD O H VRAM color register write strobe.
DDA_WRMSK_LD O H VRAM writemask write strobe.
DM1_PLANES(1:0) O DRAWMODE1 VRAM planes enabled for R/W access.
DM1_DRAWDEPTH(1:0) O DRAWMODE drawn pixel depth.
DM1_DBLSRC O DRAWMODE1 double-buffer mode pixel read source buffer select.
DM1_COMPARE(2:0) O DRAWMODE1 condition specifier for color compare function.
DM1_RGBMODE O H DRAWMODE1 RGB (vs. color index) enable.
DM1_DITHER O H DRAWMODE1 dither enable.
DM1_FASTCLEAR O H DRAWMODE1 pixel FASTCLEAR write mode enable.
DM1_BLEND O H DRAWMODE1 blendfunction enable.
DM1_SFACTOR(2:0) O DRAWMODE1 source blending factor.
DM1_DFACTOR(2:0) O DRAWMODE1 destination blending factor.
DM1_BACKBLEND O H DRAWMODE1 COLORBACK destination blend enable.
DM1_BLENDALPHA O H DRAWMODE1 source alpha/1.0 blendfunction select for source alpha
DM1_LOGIC_OP(3:0) O DRAWMODE1 logical operation type.
CM_CIDMATCH(3:0) O CLIPMODE CID check compare code.

Table 26:   DDA_TOP port descriptions.
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TOPSCAN(9:0) O Y address for top of screen scan line.
COLORBACK(31:0) O Destination blend color when DM1_BACKBLEND=1.
DDA_AALIAS O H Enables anti-alias mode (from DRAWMODE0 OPCODE).
RF_PIX_(A:D)_(0:1)(31:0) I RFIFO data output (framebuffer read).
RF_EMPTY_(A:D)(0:1) I H RFIFO empty flags.
DDA_RF_POP_(A:D)(0:1) O H RFIFO write strobes.
GIO_HOSTRD_POP I H GIO read acknowledge strobe.
DDA_RD_DAV O H GIO register/DMA read data available flag.
DDA_PIO_DAV O H GIO PIO read data available flag.
DDA_REG_DATA(63:0) O Context register read bus.
DDA_HOSTRW(63:0) O HOSTRW read bus.
M_PIX_PIPE_EMPTY I H VRAM controller pixel pipe idle flag.
DDA_GFX_BUSY O H Graphics pipeline idle:  M_PIX_PIPE_MT & DDA pipeline idle.

Signal Name Type Active Description

Table 26:   DDA_TOP port descriptions.
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5.4 VRAM Controller Unit

The frame buffer controller is made up of four independent memory controllers (A thru D).Each
memory controller controls two sub banks (A0, A1, B0....etc.). Following is a description of how the banks
are interleaved.

5.4.1 Vram Interleave

The frame buffer is made up of 8 Vrams for the base system and 24 Vrams for the upgraded sys-
tem. Each of the four banks has two sub banks that interface to 1 to 3 Vrams data port. The address is
shared between two sub banks as is RAS, WB/WE and DT/OE. Each sub bank has its own CAS signal.
Since the frame buffer supports 2 MBit Vrams, (512 x 512 x 8 array) there are two scan lines in each row of
the Vram. Each sub bank holds the adjacent pixel along a scan line. In order to achieve a high writing rate
for line drawing, the frame buffer has been scrambled as shown in Table 28. The left two columns show the
Vram page number and the scan line number. the rest of the table shows which pixels are affected by which
bank. Figure 6 shows the X vs. Y interleave of the frame buffer. The scan line packing is shown in Table 32.
This interleaving format (making the frame buffer isotropic) lends itself to fast writing rates. e.g. for vertical
lines, two pixels reside in the same Vram page and sub-bank, therefore, between all four banks REX3 can
write 8 pixels in one full memory write cycle time + one page mode cycle time. All four banks write the two
pixels in parallel. For lines of slope +/- 1, REX3 writes 8 adjacent pixels, one in each bank. For horizontal
lines every other bank is accessed in parallel and in page mode. For spans, all banks are accessed in par-
allel and in page mode. This holds true when drawing lines and spans in reverse direction (i.e L-R Vs. R-L
etc.)as well.

                                           Interleave      0        1        2       3       4       5       6       7

5.4.1.1 Aux/Pixel plane Interleave

In addition to the frame buffer interleave shown in Table 1, the AUX planes are also interleaved
with the pixel planes as shown in Table 2. Starting from column address 0, the first four bytes are AUX
planes followed by 8 bytes of pixel planes. There are two 2 AUX values per byte. Due to the 8 way inter-
leave, the two AUX’s are for pixel 0 and pixel 8 in the first byte of the row 0, etc. All operations on the AUX
planes are read modify write operations. This is due to the fact that not all operations will be MOD2 aligned
in the X-axis and there is considerable overhead in performing multiple write mask operations for end point
conditions. Only one of the AUX planes (CID, OLY or PUP) planes can be written at any time.

Table 27: Frame buffer format

Page 3 S-line7 D0 D1 A0 A1 B0 B1 C0 C1

Page 2 S-line 6 C0 C1 D0 D1 A0 A1 B0 B1

Page 1 S-line 5 B0 B1 C0 C1 D0 D1 A0 A1

Page 0 S-line 4 A0 A1 B0 B1 C0 C1 D0 D1

Page 3 S-line 3 D0 D1 A0 A1 B0 B1 C0 C1

Page 2 S-line 2 C0 C1 D0 D1 A0 A1 B0 B1

Page 1 S-line 1 B0 B1 C0 C1 D0 D1 A0 A1

Page 0 S-line 0 A0 A1 B0 B1 C0 C1 D0 D1
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5.4.1.2 Writemask

software has to be aware of the frame buffer formats and set the appropriate write mask pattern.
In the case of writting one of the AUX planes, software does not have to worry about the pixel packing ( i.e
two pixels residing in one memory location) since the memory controller performs a read on both the pixels
and modifies only the necessary one while keeping the other pixel in an unmodified state and then writes
both the pixels back.

5.4.2 Vram address generation

The frame buffer is architected as 4 way interleave memory. Each interleave has two subbanks.
The multiplexed Vram address is shared between the two banks. Since the pixel and aux planes are inter-
leaved in the Vram, the column address for the aux planes is different from the pixel planes. For any pixel,
the corresponding aux planes are in the same Vram and same page. Only the column address varies. The
address calculation for pixel and aux as implemented in hardware is shown below.

5.4.2.1 Pixel planes column address

Y2 && [((X10 - X3)DIV8 x 12) + 4 + (X10 - X3)MOD8]

5.4.2.2 Aux planes column address

Y2 && [((X10 - X3)DIV8 x 12 ) + (X10 - X4)MOD4]

5.4.2.3 Row address

(Y9 - Y3) && (Y1 - Y0)



Table 27: Aux/pixel planes interleave

                                                                                                      X MOD 8
                                                    Y MOD 4              BANKA     BANKB    BANKC    BANKD

                                                         0                       0,1            2,3          4,5          6,7

                                                         1                       2,3            4,5          6,7          0,1

                                                         2                       4,5            6,7          0,1          2,3

                                                         3                       6,7            0,1          2,3          4,5

FIGURE 9. X,Y Interleave for the frame buffer

PIXEL 56 PIXEL 57 PIXEL 58 PIXEL 59 PIXEL 60 PIXEL 61 PIXEL 62 PIXEL 63

PIXEL 48 PIXEL 49 PIXEL 50 PIXEL 51 PIXEL 52 PIXEL 53 PIXEL 54 PIXEL 55

PIXEL 40 PIXEL 41 PIXEL 42 PIXEL 43 PIXEL 44 PIXEL 45 PIXEL 46 PIXEL 47

PIXEL 32 PIXEL 33 PIXEL 34 PIXEL 35 PIXEL 36 PIXEL 37 PIXEL 38 PIXEL 39

PIXEL 24 PIXEL 25 PIXEL 26 PIXEL 27 PIXEL 28 PIXEL 29 PIXEL 30 PIXEL 31

PIXEL 16 PIXEL 17 PIXEL 18 PIXEL 19 PIXEL 20 PIXEL 21 PIXEL 22 PIXEL 23

PIXEL 8 PIXEL 9 PIXEL 10 PIXEL 11 PIXEL 12 PIXEL 13 PIXEL 14 PIXEL 15

PIXEL 0 PIXEL 1 PIXEL 2 PIXEL 3 PIXEL 4 PIXEL 5 PIXEL 6 PIXEL 7

PUP-CID 0 PUP-CID 8 PUP-CID 1 PUP-CID 9 PUP-CID 2 PUP-CID 10 PUP-CID 3 PUP-CID 11 PUP-CID 4 PUP-CID 12 PUP-CID 5 PUP-CID 13 PUP-CID 6 PUP-CID 14 PUP-CID 7 PUP-CID 15

VRAM 0 VRAM 1 VRAM 2 VRAM 3 VRAM 4 VRAM 5 VRAM 6 VRAM 7

BANK A                                        BANK B                                     BANK C                                     BANK D

 0                       1                        0                       1                        0                       1                       0                        1

PUP-CID 16 PUP-CID 24 PUP-CID 17 PUP-CID 25 PUP-CID 18 PUP-CID 26 PUP-CID 19 PUP-CID 27 PUP-CID 20 PUP-CID 28 PUP-CID 21 PUP-CID 29 PUP-CID 22 PUP-CID 30 PUP-CID 24 PUP-CID 31

PUP-CID 32 PUP-CID 40 PUP-CID 33 PUP-CID 41 PUP-CID 34 PUP-CID 42 PUP-CID 35 PUP-CID 43 PUP-CID 36 PUP-CID 44 PUP-CID 37 PUP-CID 45 PUP-CID 38 PUP-CID 46 PUP-CID 39 PUP-CID 47

PUP-CID 48 PUP-CID 56 PUP-CID 49 PUP-CID 57 PUP-CID 50 PUP-CID 58 PUP-CID 51 PUP-CID 59 PUP-CID 52 PUP-CID 60 PUP-CID 53 PUP-CID 61 PUP-CID 54 PUP-CID 62 PUP-CID 55 PUP-CID 63



Table 28: Frame buffer scanline interleave.

SCAN LINE 1019 OSM SCAN LINE 1023 OSM

ETC ETC

SCAN LINE 11 OSM SCAN LINE 15 OSM

SCAN LINE 10 OSM SCAN LINE 14 OSM

SCAN LINE 9 OSM SCAN LINE 13 OSM

SCAN LINE 8 OSM SCAN LINE 12 OSM

SCAN LINE 3 OSM SCAN LINE 7 OSM

SCAN LINE 2 OSM SCAN LINE 6 OSM

SCAN LINE 1 OSM SCAN LINE 5 OSM

SCAN LINE 0 OSM SCAN LINE 4 OSM

0 22                 22                                                                   44                 5
34                 55                                                                   99                 1
90                 56                                                                   56                 1

0

511



FIGURE 10. REX3 Memory Controller and Pixel Pipe Top-Level Block Diagram
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Table 29: NEWPORT MEMORY CTRL PIN DESCRIPTION

Signal Description Type Timing
                          WRITE BANK FIFO

E_WR_FIFO_(A:D) Write command for bank fifos I 33MHz
E_DAT_VAL_(A:D)_(0:1) Data valid in bank fifo I 33MHz
E_SRC_DAT_(A:D)_(0:1)
_(31:0)

Source data written into bank fifos RGBA 8 Bits each. I 33MHz

E_READ Pixel read or write command I 33MHz
E_X(10:3) Screen X coordinates DIV8) I 33MHz
E_Y(9:0) Screen Y coordinates I 33MHz
E_W_X_(A:D)_(0:1) Window  relative X bits for dithering I 33MHz
E_W_Y_(0:1) Window  relative Y bits for dithering I 33MHz
RDFIFO_FULL_(A:D)_(0:
1)

Read fifo full indicator I

M_WR_BANK_FULL_(A:
D)

Write bank fifo full O 33MHz

                          GLOBAL  SIGNALS
SRESET Synchronous reset for disabling drivers and test I Static/33
A_ALIAS Anti alias bit I Static/33
ENDITHER Enable dither I Static/33
VC_TX_REQ Transfer request from VC I Async
VC_SET_TSC Set transfer line # to TOPSCAN Reg. I Async
LD_COLR_REG Load color reg. in Vram command (pulse) for block mode I 33MHz
LD_WR_MSK Load write mask reg in RB2 command (pulse) I 33MHz
MSK_COLOR_REG(23:0) Write mask/color reg data for LD_COLR_REG or LD_WR_MSK com-

mands
I Static/33

TOPSCAN(9:0) First scanline for screen refresh (top of screen) I Static/33
CIDMATCH(3:0) 4bits. One of four CID values to match. I Static/33
PIXDEPTH(1:0) 4, 8, 12, or 24 bits/pixel I Static/33
COMP(2:0) Color compare function If “111” => color comp disabled I Static/33
VREFRESH(2:0) # of memory refreshes to follow a vram transfer cycle I Static/33
PLANES(1:0) Planes to access I Static/33
SFACTOR(2:0) Source factor for blend function I Static/33
DFACTOR(2:0) Destination factor for blend operation I Static/33
COLORBACK(32:0) Background color to be blended for textures I Static/33
ENBACKBLEND Enable background color blend I Static/33
ALPHAREF(7:0) Reference alpha for AFUNCTION test I Static/33
BLEND Enable the blend function i Static/33
BLENDALPHA Blend source alpha with alpha i Static/33
LOGIC_OP(3:0) Logic operations to be performed on src/dst pixels I Static/33
DBLBUF Double buffer mode I Static/33
DBLSRC Read source buffer for double buffer mode I Static/33
FGASTCLEAR Vram blockfill mode (for writing color reg into frame buffer I Static/33
RGBMODE RGB mode Vs CI I Static/33
M_PIX_PIPE_MT Pixel pipe empty O 66MHz
M_Y_DISP(1:0) LSB’s of screen refresh to XMAP9 for frame buffer descramble O 66MHz

                                FRAME BUFFER SIGNALS
REX3_DAT_IN_(A:D)_(0:1
)_(7:0)

Frame buffer read data (7:0) via RB2 I 66MHz

RAS_(A:D Vram Row Address Strobe O 66MHz
CAS _(A:D)_(0:1) Vram Column Address Strobe O 66MHz
DTOE_N__(A:D) Vram transfer/ output enable signal O 66MHz
WBWE_N__(A:D) Vram write control signal O 66MHz
DSF1_(A:D) Vram special function signal O 66MHz
FA)_(A:D)_(8:0) Vram multiplexed address O 66MHz
REX3_DAT_OUT_(A:D)_(
0:1)_(7:0)

Frame buffer write dat(7:0) via RB2 O 66MHz
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5.3.2 Memory Controller

The memory controller for Newport is implemented as 4 independent bank controllers. The 4 controllers are identical to
each other and operate independently from each other. Figure 1. shows the top-level of the frame buffer controller. The
frame buffer controller includes all the dither, logic-op, blend, cid check, Afunction test, color compare, read format and
write format functions. There is one copy of each function in each sub bank except for the blend unit which is shared
between to sub banks.The pin description of the controllers (A thru D) is shown in Table 1. Each bank has its own data
and address port as well as various control signals for RB2 and Vrams. The write bank fifos are incorporated into each
bank while the read fifos reside in the DDA section.

Each bank has two sub banks (0 and 1) so for bank A references to the sub banks will be made as A0 and
A1. The address port is shared between the sub banks of a bank while they have their own 8 bit bidirectional data ports
interfacing to RB2’s. The data ports serially send out 3 bytes of to assemble a 24 bit pixel in RB2 which interfaces to
frame buffer. Reads from the frame buffer are serialized by RB2 and read on the 8 bit data port of REX3. The byte num-
ber to read/write to RB2 is selected by RB2_SEL(0:1) generated from REX3.

The memory controller of each bank operates the sub banks in parallel. Each bank has two valid bits so
that the pixel write can be negated at the last moment. There are 6 functional state machine units in each bank, and
one common general purpose unit (called general mc decode) which is common to all 4 banks. The general mc unit
provides various decodes and also synchronized the screen transfer requests from VC2. The 6 state machine units in
each bank are as follows:

a. CONTROL MODULE
b. RMW_FSM
c. WRITE_FSM
d. LD_REG_FSM
e. TR_FSM
f. OUT_BLOCK

Figure 3. shows the connection of the various state machines. The Control Module is responsible for
enabling the various state machines. With the exception of CONTROL MODULE and OUT_BLOCK, only one state
machine is active at any time.

The address pipeline is shown in Figure 2. Page comparison of the previous pixel address and the current
pixel address is done at the first pipeline stage. If a page miss is encountered, further reading of the write bank fifo is
inhibited and the previous two pixels are written before generating a precharge cycle for the Vrams.

Non-persistent write mask feature of the Vrams has been used. The write mask is loaded into RB2 by assert-
ing RB2_LDWMASK and the appropriate byte select # on the RB2_SEL(0:1) lines. RB2 detects RAS being at a logic
high and asserts the write mask value onto the frame buffer data bus. Each bank has a common RAS signal for the sub
banks and two CAS signals, one for each sub bank. For lines, only one of the sub banks is operated on whereas for
spans both banks are operated on simultaneously and their CAS signals are synchronous if Xaddress MOD2 is zero.
For write only cycles, the controller performs early write cycles and for read modify write cycles, late write cycles are
performed.The memory controller operates at 66MHz. Full page cycle takes 10 clks (150 nS) so 80nS or faster Vrams
are required. The color reg in the Vrams is loaded by the memory controller. Block mode write cycle feature of the

RB2_SEL_(A:D)_(2:0)) Byte select for RB2 O 66MHz
OE_(A:D) Output enable for bidirect data drivers O 66MHz

                           READ BANK FIFO SIGNALS
M_RD_DATA_(A:D)_(0:1)
_(31:0)

Frame buffer read data (31:0) to read fifo’s O 66MHz

M_WR_FIFO_(A:D)_(0:1) Write command for M_RD_DATA O 66MHz
RDFIFO_FULL_(A:D)_(0:
1)

Read fifo full (one per bank) I 66MHz

Table 29: NEWPORT MEMORY CTRL PIN DESCRIPTION

Signal Description Type Timing
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Vrams is available for screen clear operations. In block mode, each bank can write 8 pixels in 4 clocks
(60nS).

Following is the pin description of each state machine unit and their respective state diagrams.

5.3.3 VRAMS

REX3 has been designed to work with VRAMS from the following vendors:

Toshiba TC528257

Mitsubishi M5M482256

Hitachi HM538253

Micron MT42C8255

Fujitsu MB8128xx

NEC uPD482234

TI TMX55160

Vitelic V53C851

Samsung KM428C256

All of the above have to be 70nS or faster.

5.4 Scan Refresh Latency

Scan refresh is initiated by asserting VC_TR_REQ signal. A falling edge is detected on this sig-
nal which triggers a 480nS timer in REX3. Once the timer has timed out, if there are no more pixels in the
pipe then the transfer state machine is invoked. When a falling edge on VC_TR_REQ signal is detected the
display line number (initialized from VREFRESH reg.) first increments and then does a Vram serial read
transfer cycle. During the timeout period another falling edge on VC_TR_REQ signal may be generated (do-
ing so will not restart the 480nS timer) to increment the display line number, hence generating interlaced
mode. The minimum time to realize a new scan line in Vram after asserting VC_TR_REQ is 650nS and the
maximum time is 750nS. The timing constraints are shown in the diagram below.

VC_TR_REQ

line N -1 line N line N + 1

A B

C

A  min - 30nS
B  min - 720nS
C  min - 650nS    max - 750nS

Scan line
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FIGURE 11. Newport graphics memory controller address pipeline for one bank
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FIGURE 12. Newport graphics memory control block diagram for one bank
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FIGURE 13. RMW_FSM State Diagram
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FIGURE 14. WRITE FSM  State Diagram
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FIGURE 15.  TR_FSM and LD_REG_FSM State Diagrams
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FIGURE 16. General MC Decodes pinout
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FIGURE 17.   Address pipe and Control Module pinout
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FIGURE 18.  RMW_FSM and WRITE_FSM Pinout
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FIGURE 1. LD_REG_FSM, TR_FSM and OUT_BLOCK pinout
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5.4.0.1 General decodes module

This module decodes various global signals and provides information to the state machines as to which
planes are being accessed currently. It also contains the line counter for screen refresh and communicates to the DDA
section that all the banks are idle.  The line counter increments every time the leading edge of VC_TR_REQ is
detected. VC_SET_TSC resets the line counter to the value in TOPSCAN(9:0). This module is shared between al 4
banks.  VC_TR_REQ and VC_SET_TSC  should have a minimum pulse width of 30nS

Table 30: GENERAL MC DECODES MODULE PIN DESCRIPTION

 SIGNALS DESCRIPTION TYPE
SRESET Synchronous reset I
MEM_CLK Memory clock 66MHz. I
COMPARE(2:0) Color compare bits from DRAWMODE1 REG. I
LOGICOP(3:0) Pixel logicop from DRAWMODE1 REG. I
CIDMATCH(3:0) Cid match bits from DRAWMODE1 REG. I
PLANES(1:0) Planes bits to indicate which planes to write. From DRAWMODE1 REG. I
RGBMODE RGB Vs CI mode from DRAWMODE1 REG. I
TR_DONE Transfer request is done. I
PIXDEPTH(1:0) Drawn pixel depth From DRAWMODE1 REG. I
PIPE_IDLE(3:0) Pixel pipe idle from each bank. I
VC_TR_REQ Transfer request from VC. I
VC_SET_TSC Set top of scan from VC. To set first displayable line after Vsync. I
TOPSCAN(9:0) Top of scan set by host in GIO reg block. I
EN_COMP Decode to enable color compare O
EN_CID_CHK Decode to enable CID checking O
DEST_PIX_OP Destination pixel is required (hence atleast RMW for frame buffer) O
PIX_PLANES Read/write pixel planes O
CID_PLANES Read/write cid planes O
OLAY_PLANES Read/write overlay planes O
PUP_PLANES Read/write pop up planes O
NO_PLANES No planes are selected for transaction O
TR_REQ(3:0) Transfer request to control module. This is asserted after VC_TX_REQ rising

edge.
O

TR_PENDING(3:0) Transfer request pending to control module. Asserted 500nS after TR_REQ O
M_Y_DISP_(9:0) Current line being displayed. Updated by VC_TR_REQ O
M_PIX_PIPE_MT PIPE_IDLE(3:0)  AND’ed to indicate all MC banks are idle O
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5.4.0.2 Control module

The Control Module is responsible for enabling one of 4 state machines (write_fsm, rmw_fsm, tr_fsm or
ld_reg_fsm).  It also indicates to rmw_fsm as to the type of cycle to perform. The PIP counter resides in this module as
does the arbiter for screen/memory refresh.

Table 31: CONTROL MODULE PIN DESCRIPTION

 SIGNALS DESCRIPTION TYPE
SRESET synchronous reset I
MEM_CLK Memory clock 66MHz. I
EN_CID_CHK CID checking enabled I
EN_CCOMP Enable color compare I
PIX_PLANES Read/write pixel planes I
CID_PLANES Read/write cid planes I
OLAY_PLANES Read/write overlay planes I
PUP_PLANES Read/write pop up planes I
NO_PLANES No planes are selected for transaction I
DEST_PIX_OP Dest pixel required I
FASTCLEAR Enact block write cycles of Vram I
RMW_STATES(5:0) State vector from RMW FSM I
BLEND Enable blend function I
F_READ Read bit from write bank fifo I
LD_COLR_REG Load color reg command from host I
LD_WR_MSK Load write mask reg command from host I
TR_PENDING Transfer pending. Do transfer only after this signal is active. I
TR_DONE Transfer is done I
LD_DONE Reg load due to LD_COLR_REG or LD_WR_MSK is done I
F_FIFO_MT Write bank fifo is empty I
RMW_FIFO_RD Write bank fifo read command from RMW FSM (increment PP counter) I
W_FIFO_RD Write bank fifo read command from DMA FSM (increment PP counter) I
DEC_W_PIX_CNT Decrement PP counter command from DMA FSM (i.e pix is written) I
DEC_R_PIX_CNT Decrement PP counter command from RMW FSM (i.e pixel is read/written) I
CID_ADR Select CID address for the address pipe O
RRMW Mem cycle requires  read/read/modify write O
RMW Memory cycle requiring read modify write O
FAST_READ Pipelined read of FB (due to Scr2Scr or Host DMA/PIO read) O
FAST_X Destination logic-op cycles only O
MAIN_IDLE Main state machine is in idle state O
TR_FSM Serial transfer has been requested. O
LD_REG_FSM Enable  LD_REG FSM (do color or write mask reg load) O
RMW_FSM Enable RMW FSM (do pipeline reads or “r/mw type” mem cycles) O
WRITE_FSM Enable DMA_WRITE FSM (do pipelined writes to the FB) O
SEL_COLR_REG Mux select for color data O
PIPE_IDLE No more pixels in the pipe or to process O
FIFO_READ AND of RMW_FIFO_RD_N,  DMA_FIFO_RD_N O
PIP(2:0) #  of pixels in the pipe. O
BUS_REV Indicator for bus reversal on next pixel O
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5.4.0.3 Address Pipe

The address pipe module contains the Vram address calculator and the address mux. This module is responsible
for the address data path. The addresses have a 4 clock pipe line and can hold 3 different addresses at any time. The Vram
page comparator also resides in this module.

Table 32: Address Pipe Pin Description

Signals Description Type
MEM_CLK Memory clock I
YAD_IN(9:0) Y address from write bank fifos I
XAD_IN(7:0) X address from write bank fifos. I
M_Y_DISP(9:0) Display refresh address for showing the next line. I
F_DAT_VAL(0:1) Data valid bits from write bank fifos. I
FIFO_RD Fifo read strobe I
LD_EN_B Load stage B in the address pipeline I
LD_EN_C Load stage C in the address pipeline I
CID_ADR Command to compute the AUX planes address I
ROW_ADR Enable the row address to the Vram address port I
TR_FSM Indication of serial read transfer I
ADDR3 Address X3 for selecting high/low pixel in AUX planes. O
VRAM_ADR(8:0) Multiplexed Vram address O
P_DAT_VAL(0:1) Pipelined version of F_DAT_VAL(0:1) O
PHIT Page hit indicator O
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5.4.0.4 RMW state machine

The RMW state machine performs the following types of cycles:

a.  Read frame buffer
b.  Read modify write
c.  Read/read modify write
d.  Fast_X

The read cycles can read any of bit planes in pipe line mode. The read data is written into the read bank fifos.
Read cycles can be used for PixBlit or host read operations.

The read modify write cycles can do the following:

a.  CID checked writes in the pixel planes
b.  Non CID checked  blended writes in the pixel planes
c.  Non cid checked color compared writes in any of the planes
d.  Non cid checked writes in the aux planes.

The Read / read modify cycles are used for the following:

a. Cid checked color compared writes in any planes
b. Cid checked blends in the pixel planes.

The Fast_X mode is used for destination Logic-op’s only.

Table 33: RMW_FSM PIN DESCRIPTION

 SIGNALS DESCRIPTION TYPE
SRESET Synchronous reset I
MEM_CLK Memory clock 66MHz. I
PHIT Page hit form FB page comparator in ADDR_PIPE module I
FAST_X Decode for 8 bit CI and logicop with no cid chk (for X perf) I
RMW Enables this state machine. Otherwise idle I
RRMW Mem cycle requires read/read/modify write I
BUS_REV Bus reversal has occurred on current fifo read I
RMW_FSM Enable the RMW state machine I
FAST_READ Pipelined read of FB (due to Scr2Scr or Host DMA read) I
PIP(2:0) #  of pixels left in pipeline I
F_FIFO_MT Write bank fifo empty I
RDFIFO_FULL_(0:1) Read bank fifo full I
RD_V3 Write bank fifo read delayed 3 clocks I
DV Data valid for rmw_state = W I
J6_RMW State J of the RMW_FSM delayed by 6 clocks I
TR_REQ Refresh transfer request O
RMW_FIFO_RD Write bank fifo read command O
RMW_STATES(5:0) State machine state bits O
RMW_PRECH_RAS Precharge in next clock for RMW_FSM O
DEC_R_PIX_CNT Decrement PP counter O

Table 34: WRITE_ FSM PIN DESCRIPTION

 SIGNALS DESCRIPTION TYPE
SRESET Synchronous reset I
MEM_CLK Memory clock 66MHz. I
WRITE_FSM Enable WRITE_FSM I
TR_REQ Refresh request for screen update I
PHIT Page hit form FB page comparator in ADDR_PIPE module I
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5.4.0.5 Write state machine

The WRITE_FSM executes memory cycles only. These cycles exclude any destination pixel processing. Block-
mode writes into the Vrams are also executed by this state machine. The PIP counter increments or decrements whenever
the write bank fifo is read or written respectively.

PIP(2:0) # of pixels left in pipeline I
F_FIFO_MT Write bank fifo empty I
BUS_REV Bus reversal due to current read of fifo I
W_FIFIO_RD Write bank fifo read command O
W_STATES(4:0) State machine state bits O
W_PRECH_RAS Precharge ras in next clock for WRITE_FSM O
DEC_W_PIX_CNT Decrement PP counter O

Table 34: WRITE_ FSM PIN DESCRIPTION

 SIGNALS DESCRIPTION TYPE
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5.4.0.6 Load registers state machine

LD_REG_FSM is responsible for loading the color register of the Vrams as well as the writemask register in the
RB2. SEL_COLR_REG indicates when the color register needs to be loaded in the Vrams, otherwise the writemask is
loaded in the RB2. Neither of these registers are readable from the RB2 or the Vram. A copy of these registers exists in the
REX3 register file. Since the read/write format logic is in the RB2, a copy of the PLANES(2:0), DRAWDEPTH(1:0), RGB-
MODE, LOGIC-OP(3:0) and DBLSRC bits are sent along sub bank 1 data bus while the writemask data is sent along sub
bank 0. Every time the write mask or above mentioned registers are modified, a load write mask command is executed to
keep the RB2 up-to-date with the current context. The color data value for loading the color register in the Vrams is sent on
both the sub banks at the same time, one byte at a time.

Table 35: LD_REG_FSM PIN DESCRIPTION

 SIGNAL DESCRIPTION TYPE
SRESET Synchronous reset I
MEM_CLK Memory clock 66MHz. I
LD_REG Enable LD_REG FSM I
SEL_COLR_REG Mux select for color data I
LD_REG_STATES(3:
0)

State machine state bits O

LD_DONE Register load done O
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5.4.0.7 Refresh

The leading edge of transfer request is detected and a 480nS timer is activated and the line counter is incre-
mented. During the 480nS period, a second transfer can be asserted by VC2 so the line counter can be incremented again
(for interlace mode). The timer will not be reset due to the second transfer request. At the end of the 480nS period a refresh
request is made to the arbiter. The TR_FSM first does a read transfer cycle followed by zero to eight memory refresh cycles
depending on the value of VREFRESH(2:0).

VREFRESH(2:0) being “000” disables memory refresh.

Table 36: TR FSM PIN DESCRIPTION

 SIGNALS DESCRIPTION TYPE
SRESET Synchronous reset I
MEM_CLK Memory clock 66MHz. I
TR_FSM Enable TR FSM I
VREFRESH(2:0) Number of memory refreshes to do in burst refresh I
TR_STATES(3:0) State machine state bits O
TR_DONE Transfer and refresh done O
REF_TC # of specified refreshes are done O
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Table 37: OUT_BLOCK DESCRIPTION

SIGNALS DESCRIPTION TYPES
SRESET Synchronous reset signal I
MEM_CLK Memory clock 66MHz. I
TR_FSM Enables transfer fsm I
REF_TC # of specified memory refreshes are done I
LD_REG_FSM Enables load register fsm I
SEL_COLR_REG Load color reg. in Vram I
LD_STATES(3:0) LD_REGFSM state bits I
WRITE_FSM Enables the write fsm I
W_STATES(4:0) WRITE_FSM state bits I
FASTCLEAR Perform Vram blockfill (see block write function of Vram) I
RMW_FSM Enables rmw fsm I
RMW_STATES(5:0) RMW_FSM state bits I
RMW Read modify write cycles for rmw_fsm I
RRMW Read/read modify write cycles for rmw_fsm I
FASTX Special cycles for rmw_fsm to speed up X11 operations I
PHIT Page hit indicator for frame buffer I
W_PRECH_RAS Precharge ras in next clock for write_fsm I
RMW_PRECH_RAS Precharge ras in next clock for rmw_fsm I
PIP(2:0) # of pixels in the pipe I
P_DAT_VAL(0:1) Pipelined data valid bit from write bank fifo I
EN_CCOMP Enable color compare (also set for A function since comparators are shared) I
CCOMP_PASS(0:1) Color compare (or A function) pass bits I
EN_CID_CHK Enable cid checking I
CID_PASS(0:1) Cid pass bits I
MAIN_IDLE Main state machine is idle I
ADDR3 Address X3 from module addr_pipe1 I
FIFO_RD Write bank fifo read signal I
FAST_READ Fast read type cycles for the rmw state machine I
OLAY_PLANES Overlay planes are to be accessed I
CID_PLANES Access CID planes I
PUP_PLANES Access PUP planes I
BLEND Blend function is enabled I
RAS Row Address Strobe to Vrams O
CAS(0:1) Column Address Strobe to Vrams O
DTOE_N Data transfer / Output enable signal to Vrams O
WBWE_N Write per bit / write enable signal to Vrams O
DSF1 Special function signal to Vrams O
RB2_SEL_(2:0) Byte select codes to RB2 O
OE_N Output enable for the data bus to RB2 O
M_WR_FIFO_(0:1) Write strobes for the read bank fifos O
GO_DATA Signal to start the data flowing from the fifo read register thru the dither and out. O
LD_EN_B Load stage B of address pipe O
LD_EN_C Load stage C of address pipe O
ROW_ADR Select row address for the address pipe O
RD_V3 Write bank fifo read delayed 3 clocks O
RD_V8 Write bank fifo read delayed 8 clocks O
J6_RMW State J of RMW_FSM delayed by 6 clocks O
DV Data valid for rmw state machine in state W O
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5.4.0.8 Out block module

The OUT_BLOCK module decodes the state bits of each state machine and generates frame
buffer control signals.  It also controls the address pipeline and generates go_data to the data pipe to con-
trol data flow. RB2 controls are also generated here by decoding the state bits. The encoding of the
RB2_SEL(2:0) is as shown in Table 38.

When performing a Load Write Mask operation, the write mask is sent on sub bank 0 data bus and the
drawmode1 register bits are sent on sub bank 1 data bus to RB2. The drawmod1 registers will be sent in
the following order starting with the
LSB of the first byte: This is shown in Table 39.

RB2_SEL(2:0) Function
0 NOOP
1 Write (4 components), also used to write LO pixel in AUX planes
2 Write HI pixel in AUX planes (else if blend then hold data in sub-

bank 1 output of RB2)
3 Load write mask and partial DRAWMODE1 Reg. into RB2
4 Read (4 components), also used to read LO pixel in AUX planes.
5 Read HI pixel in AUX planes
6 Read LO pixel CID bits for cid checking.
7 Read HI pixel CID bits for cid checking.

Table 38: RB2_SEL(2:0)  Function codes.

Bit 12 Bit 11 Bit 10 Bit 9 Bit (8:6) Bit (5:4) Bit (3:0)
Blend Fastclear RGBmode Dblsrc Planes(2:0) Drawdepth(1:0) Logicop(3:0)

Table 39: Transmission order of Drawmode1 reg. bits to RB2
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5.4.1 Gate Count

Table 40: Gate count of memory controller state machine and address pipe.

Block Description Gate count Total(4Banks)

ADDRESS PIPE Address pipeline to VRAMs 950 3800

LD_REG_FSM State machine for loading registers 80 320

OUT_BLOCK Output decode block 650 2600

RMW_FSM Read modify write state machine 400 1600

TR_FSM Transfer and refresh state machine 150 600

WRITE_FSM Write state machine 200 800

GEN. MC DECODE General MC decoder 100 400

CONTROL MOD Master state machine controller 200 800

Grand Total - 2730 10920
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5.4.3 Pixel Processing Pipe

There are two pixel pipes in each bank to process the two adjacent pixels before writing into framebuffer.
The processes can be dithering, logicop, alpha blending, cid checking, color comparison and afunction. In
order to reduce gate count in REX3, logical operation, write formating and read formating are performed in
RB2.  The block diagram of the pixel pipes in each bank is shown below. The colors and alpha’s of two adja-

cent pixels in the bank can be read from write fifo. Each color component and alpha are pipelined through
dithering block and are collected and formated to frame buffer format in RB2 chip. The cycle time of pixel
processing pipe is 15 ns. Processing 4 color components of a pixel takes 4 cycles(60 ns), which matchs the
memory cycle time. When blender is enabled, the source color component blends with the destination color
component through the blender pipe and then go through the dithering block. The color compare block not
only compare the source color index with the destination color index but also compare the source alpha with
reference alpha. Whenever the drawing contex is changed, REX3 loads write mask from pipe0 and some
draw mode bits from pipe1 to RB2 to support RB2 for performing read write formating and logicop.

5.4.3.1 Blender

The blender performs the blending function Cb=Fs*Cs + Fd*Cd, where Cb is blended color, Cs is source
color and Cd is destination color. The source factor Fs and destination factor Fd are defined in section 3.8.5
Table 21 and Table 22. In order to reduce gate count, the equation Fs*Cs + Fd*Cd is decomposed to A + B
+ (+/-C)*(D+/-E) so that only one multiplier is required. The following table shows all the source factor and
destination factor combinations and the terms after decomposition. The block diagram of the blender is also
shown in the next page.

rd_fifo
banka wr_fifo

ccomp
afunc

ccomp
afuncblender

control

dither dither

cid check cid check

rd_fifo

8 8

8 8

8

cidmatch cidmatch

color/
wrmsk

draw
reg

A_ref A_ref

8
8

colorback

color0     A0   A1  color1



SILICON GRAPHICS PROPRIETARY and CONFIDENTIAL

August 13, 1993  page142

Table 28: Decompose Fs*Rs+Fd*Rd to A+B+(+/-C)*(D +/- E)

SF DF Fs*Rs+Fd*Rd A B +/-C D +/-E

0 0
1
2
3
4
5

0
Rd
Rs*Rd
(1-Rs)*Rd
A*Rd
(1-A)*Rd

0
0
0
0
0
0

0
Rd
0
Rd
0
Rd

0
0
Rs
Rs
A
A

0
0
0
0
0
0

0
0
Rd
-Rd
Rd
-Rd

1 0
1
2
3
4
5

Rs
Rs+Rd
Rs+Rs*Rd
Rs+(1-Rs)*Rd
Rs+A*Rd
Rs+(1-A)*Rd

Rs
Rs
Rs
Rs
Rs
Rs

0
Rd
0
Rd
0
Rd

0
0
Rs
Rs
A
A

0
0
0
0
0
0

0
0
Rd
-Rd
Rd
-Rd

2 0
1
2
3
4
5

Rd*Rs
Rd*Rs+Rd
Rd*Rs+Rs*Rd
Rd*Rs+(1-Rs)*Rd
Rd*Rs+A*Rd
Rd*Rs+(1-A)*Rd

0
0
0
0
0
0

0
Rd
0
Rd
0
Rd

Rd
Rd
Rd
0
Rd
Rd

0
0
Rs
0
Rs
Rs

Rs
Rs
Rs
0
A
-A

3 0
1
2
3
4
5

(1-Rd)*Rs
(1-Rd)*Rs+Rd
(1-Rd)*Rs+Rs*Rd
(1-Rd)*Rs+(1-Rs)*Rd
(1-Rd)*Rs+A*Rd
(1-Rd)*Rs+(1-A)*Rd

Rs
Rs
Rs
Rs
Rs
Rs

0
Rd
0
Rd
0
Rd

-Rd
-Rd
0
-Rd
-Rd
-Rd

0
0
0
Rs
Rs
Rs

Rs
Rs
0
Rs
-A
A

4 0
1
2
3
4
5

A*Rs
A*Rs+Rd
A*Rs+Rs*Rd
A*Rs+(1-Rs)*Rd
A*Rs+A*Rd
A*Rs+(1-A)*Rd

0
0
0
0
0
0

0
Rd
0
Rd
0
Rd

A
A
Rs
Rs
A
A

Rs
Rs
A
A
Rs
Rs

0
0
Rd
-Rd
Rd
-Rd

5 0
1
2
3
4
5

(1-A)*Rs
(1-A)*Rs+Rd
(1-A)*Rs+Rs*Rd
(1-A)*Rs+(1-Rs)*Rd
(1-A)*Rs+A*Rd
(1-A)*Rs+(1-A)*Rd

Rs
Rs
Rs
Rs
Rs
Rs

0
Rd
0
Rd
0
Rd

-A
-A
-Rs
-Rs
-A
-A

Rs
Rs
A
A
Rs
Rs

0
0
-Rd
Rd
-Rd
Rd
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normalize

2s complement

+ / -+

8 8A B C D E
8 8 8

10

9

+

clamp

8 blendout

multiplier

zero      Rs        zero     Rd    zero   a  Rs  Rd       zero a  Rs  Rd      zero  a   Rs  Rd

10

10
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5.4.3.2 Dithering

The following dithering block implements the dithering and rounding algorithms described in section 3.8.2
and 3.8.3.

I[11:8]
S[11:0]

128 64    32        16     1

A - B

A + BA < B

Matrix

WX[1:0]  WY[1:0]

S[6:3]   S[4:1]    F[10:7]
S[5:2]   S[3:0]

I[7:0] I[7:4]000      I[7:4]0  I[7:4]    0
I[7:4]00

endither . (A<B) or
endither . S_F(3)

S_F[3:0]

0                          1

ditherout

12

12

12

4 4

8 8



SILICON GRAPHICS PROPRIETARY and CONFIDENTIAL

August 13, 1993  page145

5.4.3.3 Gate count of pixel processing pipe

The following estimated gate count including the gates for ATPG.

Table 29: Gate count of pixel processing pipe

Block Description Gate count Total

mem_data_io read and write registers , mux’s, cid check 720 X 8 5760

dither fifo read registers , dithering and rounding1260 X 8 10080

ccomp mux’s and color compare 200 X 8 1600

blender blender including multiplier 3100 X 4 12400

pipe_ctrl pipe controller 540 X 4 2160

blend_ctrl global blendfunction selector 50 X 1 50

write fifo 90x3 write fifo 1350X4 5400

read fifo 32x5 read fifo 800X8 6400

GRAND TOTAL overall pixel pipe gate count 43,850
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6 Revision History

0.1 First release 4-24-92

0.2 5-4-92

0.3 8-11-92           rws

Linedraw:   new opcodes (A_EDGE replaced by T_LINE, B_LINE);  endpoint filtering now enabled by
DRAWMODE0 bit ENDPTFILTER;  new secondary pixel calculation register BRESS2 added, and linedraw
algorithm updated to reflect this change;  octant mirroring effect on minor axis fraction simplified to be func-
tion (1.0 minus .frac) including case of .frac = zero;  endpoint filtering algorithm completed;  coverage  func-
tion BRESS renamed BRESS1, and its range behavior changed to [-1.0 thru 1.0].

Z buffered, antialiased linedraw:  behavior modified so that ZPATTERN contains primary pixel zmask, and
the LSPATTERN register contains secondary pixel mask, for cases of (A_LINE, T_LINE, B_LINE) with (EN-
ZPATTERN and ENLSPATTERN both asserted).

Setup:  overhead is one clock for quadrant calculation (span or block), four clocks for I_LINE, and eleven
clocks for the F_LINE, A_LINE, T_LINE, B_LINE cases.

Pipeline stalls:  a one-clock delay is added for case of X,Y end condition reached, due to H/W implementa-
tion issues at this clock speed.

Context Switching:  host overhead added for handling the SLOPERED register;  see Section 3.12 for more
details.

Off-Screen Memory:  reduced to 64 pixels wide (at right of screen).

Screen-to-Screen Moves:  XYMOVE is now treated as offset to destination;  also, the XYMOVE is interpret-
ed based on YFLIP, so the S/W can treat it as being YFLIP-independent.

0.4 8-19-92            Adrian

Added the explicit request for reloading the AWEIGHT table every time the slope (e1) of an antialiased line
changes (in effect AWEIGHT must be reloaded for every antialiased line or edge).

0.5 11-04-92    rws       ERATTA  LIST etc.

Z-Buffered Antialiased lines:  modified so that zpattern is now used for bottom of clockwise-rotated line,
whereas lspattern is used for top.  REX3 determines what is top or bottom.  tline, bline functionality can be
achieved via setting masks above for desired edge.  However, tline,bline selection of top versus bottom is
correct only for odd-numbered octants (1,3,5,7) and is reversed for even octants (2,4,6,8).

Subpixel positioned lines:  the setup algorithm is modified to handle case where first pixel, when selected
as closest pixel center to tangent of line, is different than specified vertex (along the minor axis).  This adds
the E and G tests.  The benefit of this is that pixel selection is exact and independent of vertex swapping.

Bresd term is changed from s17.8 to s18.8 format to handle full range of values.

Default octant is “111” where octant is defined as XMAJOR & XDEC & YDEC where $DEC indicates direc-
tion of stepping of axis $ is in negative direction (if =1) or positive direction (if=0).  There is one exception to
this:  if doing line setup, then minor axis $DEC is zeroed if (BRESINC1=0 and (major axis $DEC=1)).  This
is done so that horizontal or vertical edges will have opposing behavior for antialiasing when direction is
reversed.

BRESROUND interpretation is:  msb pertains to octant 1, lsb to octant 8.

Host must zero the color fractions in the COLOR$ registers whenever drawing with host data, or doing
screen to screen moves.  Else rounding may occur:  not an issue for CI.

Addresses never to be written with GO:  LSSAVE, LSRESTORE, SETUP.
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COLORRED format change:  if written to with DRAWMODE set at 12b CI mode, the h/w will take assumed
format of o12.9 and place it in a o12.11 field, shifting up by 4 and zero filling.  Context restore must then be
done with DRAWMODE not in 12b CI mode.  This new COLORRED format is a hack to handle certain con-
straints imposed by floating point format (23b mantissa).

Lines cannot be read back to host or dma’d as lines.

Endpoint filtering coverage details:  pixel coverage along major axis is 0x10 to 0x1f for each pixel.  This val-
ue is comprised of a start coverage and an end coverage.  If current pixel contains the starting point, a value
of [XSTARTFRAC xnor XDEC] yield starting coverage (note:  xmajor case assumed here for discussion).  If
the current pixel does not contain the starting point, a value of 0x0f is used.  The ending point coverage is
calculated similarly, but using value when current pixel is the endpoint of [XENDFRAC xor XDEC]. The pixel
coverage is the sum of (starting coverage plus ending coverage plus one).  The 5b result is used in the fol-
lowing way:  if coverage<3>=1, then the AWEIGHT coverage value selected by the minor axis antialiasing
lookup is passed through unchanged as the coverage value;  elsif coverage(2>=1, the AWEIGHT value is
shifted right one position;  and so forth to a minimum coverage value of AWEIGHT shifted down three po-
sitions (divided by eight).  This naturally handles the case of starting and ending points being within a single
pixel square.

Programming restrictions:  never do a write with “GO” set to the following registers or fields, unless DRAW-
MODE bit DOSETUP=1:

xend (all formats), xymove, xywin, drawmode, octant;

the issue is related to changing the end condition in the X direction having some latency within REX3.  So,
if the write does not change any bit affecting the X end condition, there is no problem.  (from tarolli:  xend is
only used with GO for drawing flat shaded triangle spans;  drawmode mostly written with DOSETUP=1;)

Fastclear and CID checking:  REX3 will disable FASTCLEAR mode if CID checking is enabled.  Therefore
host must setup fast clear operation by writing COLORVRAM and also setting up DRAWMODE and COL-
ORI (for example) register.  This is necessary because GL will not know if window system invokes CID
check.  Fastclear and dithering:  host (GL) will not invoke FASTCLEAR if dithering is enabled.

Screenmasks:  Host must add XYWIN offset to SMASKS1-4;  host must add XYMOVE offset to all SMASKs,
as REX3 does not do this.

Setting REX3 color registers to value using sub-24b RGB color value:  although the host may initialize color
for drawing with a simple write to COLORI, this register only supports 8-8-8 B-G-R packing when in RGB
mode (no problem for CI mode).  In order for host to initialize color to a 3-3-2 value, for instance, more work
must be done.  The simplest solution is for host to replicate the desired color value into the two most signif-
icant pixel fields within HOSTRW format and do the write.  This allows flat fill to occur at the full 100Mpix/
sec rate.  REX3 performs replication into 24b field automatically, so color rounding does not affect the result
written (X11 issue).  An alternate solution is for host to replicate each component into 8b fields of COLORI,
clearly this is more CPU cycles.  [note:  in REX1 we simply would put the chip into CI mode to write sub-24b
RGB values into framebuffer;  in REX3 we have not swizzled the CI bits the same way as the RGB bits so
this will not work, unfortunately].

0.6  11-10-92  rws

f_line no longer does G test, and has no minor axis adjustment step during setup.

AWEIGHT ordering across AWEIGHT0&AWEIGHT1 is simply most to least coverage, nibbles..

Endpoint filtering, when enabled by DRAWMODE0<22>, is applied to both endpoints of the line.  Use of
SKIPFIRST or SKIPLAST result in no filtering for the (masked) endpoint.  Filtering of the starting vertex is
done for each “GO” event, so when a line is broken up into segments endpoint filtering should be turned off
for all but the first segment, and the ending vertex.  Ending vertex filtering is only done for case of major axis
end value reached.  Therefore, unless a line is drawn atomically and/or with SKIPLAST set, filtering of the
endpoint requires host intervention.  (Not only must the endpoint filter be separated out of the loop, drawing
the endpoint alone is considered as both a start AND end condition, so host must modify the major axis
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starting fraction to inhibit it from interfering with REX3 endpoint coverage calculation).  Next time we may
want to have separate startptfilter, endptfilter bits to alleviate this problem.

0.7  11-11-92  adrian

Removed the G test. Removed the start point coordinate adjustment based on the E test.

0.8  11-20-92  rws

XYOFFSET feature (adds XYMOVE to XYSTARTI during execution) is now only supported for framebuffer
writes, not reads.  (changed to improve timing, assumed not useful for reads).

0.9  12-03-92, mod 1-25-93  rws

Point draw notes: in order to circumvent the rule of no write to XEND with “GO” set, host may  simply forego
writing to XEND, YEND registers.  Point is drawn in span (or block) mode with just the XSTART,YSTART
pair.  For DDA data, simply set STOPONX=STOPONY=0;  for HOSTRW data source,  set COLORHOST
and/or ALPHAHOST as needed;  and also set HOSTPACKED=0.

0.A  12-08-92  rws

Setup overhead update:  some increase here.  Spans/Blocks:  3 clocks;   Integer Lines: 5 clocks;  Subpixel
Lines:  15 clocks.  The Spans/Blocks increase due to chip timing modifications;  the Subpixel Lines increase
due mainly to E test.  (Each increased by one clock for state machine timing issue, also.)

0.B  01-25-93  rws

XYWIN hints for GL:  since the X,Y coordinates are biased by some number to facilitate simple vertex float-
to-fixed point conversion, the GL may typically send to REX3 highly biased values.  The YFLIP feature ne-
gates the Y values (YSTART, YEND, YMOVE, SMASK0Y) thereby subtracting the result from YWIN to cal-
culate the Y value on the screen.  In order for this to work correctly, the YWIN value must then be biased by
TWO times the float-to-fixed bias whenever YFLIP is invoked.  Internally, REX3 relies on 4K,4K bias for X,Y
to be relative to screen (upper left) origin.

0.C  02-11-93  rws

Antialiased line coverage is a function of host-supplied slope BRESE1.  This value must be calculated by
using coordinate X,Y values which have the 7 lsb’s cleared (lsb’s of mantissa, assuming float-to-fixed point
values being written by the GL to XSTARTF, YSTARTF, XENDF, YENDF).  This in essence matches REX3
coordinate snapping to the 4b of subpixel precision, and will yield the best results.

0.D  06-21-93  rws

Point draw hints:  it is simplest to use adrmode=iline, then there is no need to initialize the octant or to main-
tain consistent state of endpoint.  No setup/dosetup is required;  this approach preferred over that of 12-03
above.

X11 tiling hints:  unfortunately REX3 does not provide support for arbitrary tiling, other than the primitive ap-
proach of host sending packed pixels and GO for each HOSTRW write. Performance test relies somewhat
on 4x4 tiles, which REX3 doesn’t support in the most efficient way. (an easy thing to add “next time”).

Revision 0 bugs:

dma preemption protocol bug is fixed in prototypes via rework, will fix in Rev 1 rex.

dma resumption protocol bug (unspec’d MC behavior) causes 32b dma mode to fail, will fix Rev 1.

memory controller bug for R-M-W screen-to-screen moves, state machine fix in Rev 1.

stipple rotate bug for xby2 case of xstarti=xendi, s/w workaround by init’ing octant;  fix Rev 1
(unfortunately lronly behavior required host to do the check, fixed Rev 1.)

octant bit “xdec” was ‘1’ for xstart=xend, changed to ‘0’ to simplify above solution in Rev 1.
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subpixel bresenham setup Etest unnecessary, deleted in Rev 1.  (s/w workaround meanwhile).

aline coverage term incorrect, algorithm modified to base on sign (BRESS1), not S2.  fix in Rev 1.

context switch of colorgreen, colorblue do not preserve sign, must treat same as colorred (s/w fix).

ystartf write format bug, s/w to use other address/format.  fix in Rev 1.

opcode=read bit not pipelined, affects loop of pio read and writes;  fix in Rev 1.

fastclear doesn’t work for TI vrams, only does 4b per vram (not 8).  new mode bit in Rev 1.

lronly span reject for polygons doesn’t autoincrement ystarti for case of block;   s/w does spans

write of register after write of HOSTRW1 sometimes ignored;  assume process/fab problem (lsi).
s/w workaround is to write that register two or three times.

Revision 1 features added:

additional register (USER_STATUS) for reading interrupt status without resetting any  bits.

Changed FB24 bit in CONFIG register to FB_TYPE for non-TI/TI column mask-fastclear mode

ystride bit added to Drawmode0, to bump YSTARTI by +/-2 at block row end, for video option.

revision register value changed to ‘1’.

Revision 1 bugs: (07-21-93 JEL)

Preempting a burst read from DCBDATA when the last requested byte is being transferred to REX3
will result in REX3 continually asserting GRXDLY in response to subsequent reads from DCBDATA.

The (double)word in which the last requested byte resides will be lost.

The recovery procedure involves writing to DCBRESET, and re-initiating the burst read from a point
prior to where the “lost” data may be reacquired.

This failure mode only has only showed up in DMA reads from the KALEIDOSCOPE VIDEO option
with an adequate software workaround.

It is not possible to resume a preempted burst read from HOSTRW, if a read from DCBDATA occurs
during the preemption period.  Similarly, it is not possible to resume a preempted burst read from
DCBDATA, if a read from HOSTRW occurs during the preemption period.  Therefore, prior to
performing a read from HOSTRW or DCBDATA, in addition to making sure that the graphics pipe
or the backend is not busy, the host should insure that a DMA read from DCBDATA or HOSTRW is
not in progress.


